Защитный покров кабелей состоит из подушки, брони и наружного покрова.
Подушка — предназначена для предохранения его оболочки от повреждения
стальными лентами или проволоками и защиты её от коррозии.
Броня - предназначена для предохранения кабелей от механических повреждений
(от поедания животными).
Наружный покров - предназначены для предохранения кабелей от проникновения влаги и от механических повреждений.
Защитные покровы могут быть пластмассовые, волокнистые наружные и легкие защитные покрытия.
Кабели, провода и шнуры с резиновой изоляцией для предохранения изоляции от воздействия света и нефтяных продуктов оплетают хлопчатобумажной изоляцией.
Гибкие шнуры оплетают швейной ниткой в три сложения или глянцевой пряжей темных цветов или комбинированной из двух цветов. В зависимости от условий эксплуатации оплетка хлопчатобумажной пряжей может быть пропитана атмосферостойкими или противогнилостными составами.
Провода с резиновой изоляцией для защиты от воздействия масла, бензина и других растворителей, а также озона применяют с покрытием оплетки проводов лаками на основе эфиров целлюлозы. Для защиты хлопчатобумажной пряжи от плесневых грибов лаки применяют с антисептиком оксидефинилом или соединениями фенола[14].
На рисунке 1.1 показаны типичные конструкции силовых кабелей. Силовые кабели состоят из следующих основных элементов: токопроводящих жил, изоляции, оболочек и защитных покровов. Помимо основных элементов в конструкцию силовых кабелей могут входить экраны, нулевые жилы, жилы защитного заземления и заполнители.
Рисунок 1.1 - Сечения силовых кабелей : а) - двужильные силовые кабели с круглыми и сегментными жидами;
б) - трехжильные силовые кабели с поясной изоляцией и с отдельными оболочками;
в) - четырехжильные силовые кабели с нулевой жилой секторной, круглой и треугольной формы
1 - токопроводящая жила;2 - нулевая жила;3 - изоляция жилы;4 - экран на токопроводящей жиле
5 - поясная изоляция;6 – заполнитель;7 - экран на изоляции жилы;8 – оболочка;9 - бронепокров
10 - наружный защитный покров.
Токопроводящие жилы предназначены для прохождения электрического тока, они бывают основными и нулевыми. Основные жилы применяются для выполнения основной функции силового кабеля- передачи по ним электроэнергии. Нулевые жилы предназначены для протекания разности токов фаз (полюсов) при неравномерной их нагрузке. Они присоединяются к нейтрале источника тока.
Жилы защитного заземления являются вспомогательными жилами силового кабеля и предназначены для соединения не находящихся под рабочим напряжением металлических частей электроустановки, к которой подключен силовой кабель, с контуром защитного заземления источника тока.
Изоляция служит для обеспечения необходимой электрической прочности токопроводящих жил силового кабеля по отношению друг к другу и к заземленной оболочке (земле).
Экраны используются для защиты внешних цепей от влияния электромагнитных полей токов, протекающих по силовому кабелю, и для обеспечения симметрии электрического поля вокруг жил кабеля.
Заполнители предназначены для устранения свободных промежутков между конструктивными элементами силового кабеля в целях герметизации, придания необходимой формы и механической устойчивости конструкции кабеля.
Оболочки защищают внутренние элементы кабеля от увлажнения и других внешних воздействий.
Защитные покровы предназначены для защиты оболочки силового кабеля от внешних воздействий. В зависимости от конструкции кабеля в защитные покровы входят подушка, бронепокров и наружный покров[15].
Силовые кабели с изоляцией из сшитого полиэтилена и оболочкой из полиэтилена показаны на рисунке 1.2
Рисунок 1.2 - Конструкция кабеля типа ПвПг
1- Токопроводящая медная жила; 2- Полупроводящий слой по жиле; 3- Изоляция; 4-Полупроводящий слой по изоляции; 5-Водонабухающая полупроводящая лента; 6- Экран из медных проволок; 7- Медная лента; 8-Водонабухающая лента; 9 - Оболочка из полиэтилена.
Таблица 1.1 Марки, элементы конструкции и области применения
Марка кабеля | Материал жил | Оболочка | Герметизация | Область применения |
АПвП | Алюминий | П | нет | Прокладка в земле и на воздухе при условии обеспечения мер противопожарной защиты |
ПвП | Медь | П | нет | То же |
АПвПу | Алюминий | Пу | нет | То же на сложных участках трасс |
ПвПу | Медь | Пу | нет | Тоже |
АПвПг | Алюминий | П | г | Для прокладки в грунтах с повышенной влажностью и в сырых, частично затапливаемых помещениях |
ПвПг | Медь | П | г | То же |
АПвП2г | Алюминий | П | 2г | Тоже |
ПвП2г | Медь | П | 2г | То же |
АПвВ | Алюминий | В | нет | Для прокладки в кабельных сооружениях и производственных помещениях и в сухих грунтах |
ПвВ | Медь | В | нет | То же |
АПвВнг | Алюминий | Внг | нет | То же для групповой прокладки |
ПвВнг | Медь | Внг | нет | Тоже |
Типы оболочек: П - оболочка из полиэтилена; Пу - оболочка из полиэтилена, усиленная ребрами жесткости; В - оболочка из ПВХ-пластиката; Внг - оболочка из ПВХ-пластиката пониженной горючести. Типы герметизации:
г - продольная герметизация экрана водонабухающими лентами;
2г - поперечная герметизация алюминиевой лентой, сваренной с оболочкой, в сочетании с продольной герметизацией водонабухающими лентами.
2 Тепловой пробой твердых диэлектриков (вопрос 28) У твердых диэлектриков могут наблюдаться три основных механизма пробоя:
1. электрический;
2. тепловой;
3. электрохимический.
Каждый из указанных механизмов пробоя может иметь место в одном и том же материале в зависимости от характера электрического поля, в котором он находится – постоянного или переменного, импульсного, низкой или высокой частоты; времени воздействия напряжения; наличия в диэлектрике дефектов, в частности закрытых пор; толщины материала; условий охлаждения и т. д. [2, С.198].
Тепловой пробой связан с разогревом диэлектрика вследствие выделяемой в нем энергии при приложении напряжения. Если с повышением температуры выделяемая энергия увеличивается, то при некотором напряжении, называемом напряжением теплового пробоя, тепловыделение в диэлектрике превысит теплоотдачу в окружающую среду. Это обусловливает непрерывный рост температуры во времени и разрушение диэлектрика [2, С.198].
Для загрязненных либо недостаточно очищенных диэлектриков, а также для полупроводников и резистивных материалов механизм пробоя связан с процессами электропроводности и нагревания материалов. Тепловой пробой – разрушение диэлектрика за счет прогрессирующего локального энерговыделения при протекании тока в среде. Тепловой пробой возникает вследствие положительного температурного коэффициента электропроводности диэлектриков, т.е. увеличения электропроводности диэлектрика с ростом температуры. Эту зависимость обычно представляют в виде
, (2.1)
где а – температурный коэффициент зависимости;
– начальная температура; – электропроводность при начальной температуре.Механизм возникновения пробоя представляется следующим образом.
Приложенное напряжение вызывает потери энергии в диэлектрике; при постоянном напряжении они определяются удельной проводимостью диэлектрика g, а при переменном – тангенсом угла диэлектрических потерь tgd . Так как с повышением температуры величины g, а в области повышенных температур – и величины tgd растут, то при некотором напряжении возможно возникновение неустойчивого теплового состояния диэлектрика. В этом случае увеличение g или tgd с повышением температуры, в свою очередь, приводит к увеличению выделяемых в диэлектрике потерь и к дальнейшему росту температуры; это заканчивается тепловым разрушением диэлектрика.