Смекни!
smekni.com

Технология конструкционных электротехнических материалов (стр. 3 из 14)

Рисунок 2.1 – Схема диэлектрика к расчёту теплового пробоя:

А, В – электроды; С – диэлектрик

Рассмотрим слой однородного диэлектрика с толщиной

= d, находящийся между бесконечными плоскими элек­тродами (рисунок 2.1). Составим дифференциальное уравнение, соответствующее равновесному состоянию системы. В дан­ном случае из соображений симметрии принимаем плоскопараллельное тепловое поле с градиентом температуры по оси z. Поток тепла, входящий за 1 с в параллельный электро­дам слой диэлектрика толщиной dz и площадью 1 см2, бу­дет меньше потока, выходящего из слоя, на количество теп­ла, выделяющегося ежесекундно в этом слое вследствие ди­электрических потерь

, (2.2)

где k – коэффициент теплопроводности диэлектрика;

– эквивалентная удельная проводимость диэлектрика. Для переменного напряжения

(2.3)

где

– относительная диэлектрическая проницаемость;
– частота приложенного напряжения.

Напряженность теплового пробоя изменяется обратно пропорционально d.

С учетом связи между

и tgd по уравнению (2.3) имеем

(2.4)

где k – в кал/с град см;

– в вольтах.

Приведенные выше формулы получены в предположении, что в диэлектрике при его разогреве величина напряженности поля не зависит от координаты z. Это допущение можно считать справедливым при переменном напряжении, для ко­торого, если пренебречь током проводимости

(2.5)

Величина

для большинства технических диэлектриков сла­бо зависит от температуры при не очень высоких частотах. При постоянном напряжении

(2.6)

и вследствие зависимости

от
имеет место существенная зависимость Е от z, причем слои диэлектрика, ближайшие к электродам, нагружаются сильнее, чем центральные.

В этом случае напряженность и напряжение теплового пробоя определяются формулами, аналогичными (2.4 и (2.5), в которых изменяется только функция

(2.7)

(2.8)

При d ® ∞ и c ® ∞ j1(с) ® 1,0. Повышение пробивных напряжений для постоянного напряжения при тех же d и

объясняется уменьшением напряженности в центральной части диэлектрика, т. е. в области наибольших температур, и затруднением развития теплового пробоя.

При малых толщинах диэлектрика

на основании (2.7) и (2.8), пробивное напряжение пропорционально
, а пробивная напряженность – обратно пропорциональна
. Термическое разрушение диэлектрика может происходить и без неограниченного роста температуры. В стационарном состоянии, когда количество тепла, выделяемого в диэлек­трике за счет потерь, равно количеству тепла, отводимого через электроды, установившаяся температура может ока­заться слишком высокой. Разрушение в этом случае может наступить в результате оплавления, обугливания и подобных процессов, вызванных диэлектрическим нагревом. Это явление называют тепловым пробоем второго рода [2, С.204].

3 Зависимость пробивного напряжения в твердом диэлектрике

от температуры и частоты (вопрос 30)

Исследования пробоя твердых диэлектриков по своему объему значительно превышают исследования всех других видов диэлектриков, что обусловлено более широким применением твердых диэлектриков. Это, в свою очередь, обусловлено их высокими электрическими характеристиками в сочетании с удовлетворительными механическими и теплофизическими характеристиками. Механизм пробоя значительно отличается для разных диэлектриков и даже для одного и того же диэлектрика при разных условиях [16].

Закономерности пробоя твердых диэлектриков:

Температурная зависимость. Эта зависимость зачастую имеет достаточно сложный вид. Например в некоторых случаях электрическая прочность с ростом температуры сначала увеличивается затем уменьшается, в других случаях монотонно возрастает или убывает. Последний случай обычно хорошо описывается моделью теплового пробоя.

Пробивное напряжение, обусловленное нагревом диэлектрика, связано с частотой поля, условиями охлаждения диэлектрика, температурой окружающей среды; оно зависит также от нагревостойкости материала. С повышением температуры электрическая прочность уменьшается.

Для однородных плоских диэлектриков, обладающих потерями, существует приближенный метод расчета пробивного напряжения.

Для расчета U пр полагаем, что пробой происходит при повышенных температурах и в диэлектрике преобладают потери от сквозной электропроводности. Таким образом, учитывая экспоненциальную зависимость тангенса потерь (tg δ) от температуры и используя выражение Ра = U ω С-tgδ, после преобразований получим

= U2 f ε S tgδ(t – t0) / (1,8 1010 h), (3.1)

где U - приложенное напряжение; f - частота; ε. - диэлектрическая проницаемость материала; S - площадь электрода; tg δ - тангенс угла потерь диэлектрика при t 0 - температуре окружающей среды; α- температурный коэффициент тангенса угла потерь; t - температура нагретого за счет диэлектрических потерь материала; t 0 - температура электродов, приблизительно равная температуре окружающей среды; h - толщина диэлектрика.

Теплопроводность материала электродов обычно на два - три порядка больше, чем теплопроводность диэлектрика, поэтому полагаем, что теплота из нагревающегося объема диэлектрика передается в окружающую среду через электроды. Мощность, отводимая от диэлектрика, выражается формулой Ньютона

Ра = 2 σ S (t - t0 ). (3.2)

где σ - коэффициент теплопередачи системы диэлектрик - металл электродов.

Для наглядности дальнейших рассуждений воспользуемся графическим построением, показанным на рисунок 3.1, где в выбранной системе координат изображены экспоненты тепловыделения при различных значениях приложенного напряжения и прямая теплопередачи [16].

Рисунок 3.1 - Пробивное напряжение при тепловом факторе

На рисунке 3.1 изображены: прямая теплопередачи Рт = F(t); экспоненты тепловыделения

для трех различных значений приложенного напряжения. При значении напряжения U 1, прямая теплопередачи является секущей кривой тепловыделения, и, следовательно, диэлектрик нагреется до температуры t 1температуры состояния устойчивого равновесия. Напряжение U1 будет неопасным для образца, если нагрев до этой температуры не приведет к механическому и ш химическому разрушению структуры материала образца. Поэтому увеличим напряжение до значения U 1, при котором кривая тепловыделения станет касательной к прямой теплопередачи, что приведет к состоянию неустойчивого теплового равновесия при температуре t. При значении напряжения U 2 кривая тепловыделения пройдет выше прямой теплопередачи, а это означает отсутствие теплового равновесия, т.е. температура будет возрастать до разрушения диэлектрика - до теплового пробоя.

Таким образом, напряжение U , при котором имеет место неустойчивый режим - граничный режим, можно принять за напряжение пробоя U пр.

Его значение можно определить по двум условиям

Ра = Рt, (3.3)

dPa / dt = dP t / dt (3.4)

Решая эти два уравнения относительно Ui с учетом выше обозначенных значений для Ра и Рt, получаем

U2 f ε tgδ S eα(t – t0) / (1,8 1010 h) = 2 σ S (t – t0), (3.5)

U2 f ε tgδ S eα(t – t0) / (1,8 1010 h) = 2 σ S (3.6)

Разделив эти два выражения, получим 1 / α = t – t 0, тогда, подставив его в

последнее выражение и решив его относительно U, получим

U2пр = 1,8 1010 2 σ h / (f ε tgδ α) (3.7)

или

Uпр = К ( σ h / (f ε tgδ α)1/2, (3.8)

где К – числовой коэффициент, равный 1,15 10 5, если все величины выражены в единицах системы СИ.

Отсюда следует, что пробивное напряжение будет выше ( изменяется по закону экспоненты), если диэлектрик будет толще, условия теплоотвода лучше (σ больше), частота ниже, а ε и tgδ меньше. При больших ε, tgδ и при высоких частотах, а также при большом температурном коэффициенте тангенса угла потерь пробивное напряжение будет ниже.