Смекни!
smekni.com

Технология конструкционных электротехнических материалов (стр. 5 из 14)

Такое направленное движение называют дрейфом электронов, оно накладывает­ся на хаотическое движение электронов. Скорость дрейфа значительно меньше скорости теплового движения. Направленное движение электронов создает ток, плотность которого равна

, (5.7)

где n – концентрация электронов.

Этот ток пропорционален напряженности поля, коэффициентом пропорциональ­ности является удельная электрическая проводимость

. (5.8)

Классическая теория, давая в целом правильное представление о механизме элект­ропроводности, не учитывает распределение электронов по энергетическим со­стояниям. Поэтому она не может объяснить ряд противоречий теории с опытны­ми данными, в частности, классическая теория не в состоянии объяснить низкую теплоемкость электронного газа. Более полное представление о процессах, происходящих внутри вещества, дает современная квантовая физика [2, С.58].

Электропроводность создается свободными электронами, способными покинуть атомы. Такой способностью обладают только валентные электроны. Поэтому в дальнейшем речь пойдет только об электронах, находящихся на энергетических уровнях валентной зоны.

Квантовая физика исходит из того, что электроны могут находиться на строго определенных энергетических уровнях, энергетическая плотность которых вблизи границ энергетических зон изменяется по параболическому закону (рисунок 5.2 а)

, (5.9)

где

– эффективная масса электрона, учитывающая взаимодействие электро­на с периодическим полем кристаллической решетки, то есть это масса свободно­го электрона, который под действием внешней силы смог бы приобрести такое же ускорение, как и электрон в кристалле под действием той же силы.

Рисунок 5.2 – Энергетическая плотность энергетических уровней электронов

В соответствии с принципом Паули на каждом энергетическом уровне могут нахо­диться два электрона с противоположными спинами. Если концентрация свобод­ных электронов равна n, то при температуре абсолютного нуля они займут n/2 самых низких энергетических уровней. Наиболее высокий из занятых уровней называется уровнем Ферми и обозначается Ет. При нагреве кристалла электронам сообщается тепловая энергия порядка kT, вследствие чего некоторые электроны, находящиеся вблизи уровня Ферми, переходят на более высокие энергетические уровни. Избыток энергии, получаемый электронами при нагреве проводника, очень незначителен по сравнению с энергией Ферми, при комнатной температу­ре он равен 0,026 эВ (1 эВ = 1,61019 Дж). Поэтому средняя энергия свободных электронов сохраняется практически неизменной, а незначительное изменение средней энергии означает малую теплоемкость электронного газа. В квантовой теории вероятность заполнения энергетических уровней электрона­ми определяется функцией Ферми–Дирака (рисунок 5.2,б)

. (5.10)

Из формулы (5.10) следует, что уровень Ферми представляет собой энергетический уро­вень, вероятность заполнения которого равна 1/2.

Распределение электронов по энергиям (рисунок 5.2, в) определяется энергетической плотностью разрешенных уровней и вероятностью их заполнения

. (5.11)

Концентрация электронов может быть найдена путем интегрирования по всем заполненным состояниям

. (5.12)

Если считать, что атомы в металле ионизированы однократно, то концентрация свободных электронов будет равна концентрации атомов, которая рассчитывает­ся по формуле

, (5.13)

где d – плотность материала;

А – атомная масса;

N0 – число Авогадро (6,02 · 1023 моль-1).

Следовательно, уровень Ферми, отсчитанный от дна валентной зоны, может быть найден из уравнения (5.12)

. (5.14)

Величина энергии Ферми для различных металлов лежит в пределах от 3 до 15 эВ. Если в проводнике создать электрическое поле с напряженностью Ет , то электро­ны, расположенные вблизи уровня Ферми, переходят на более высокие энергети­ческие уровни, приобретая добавочную скорость направленного движения

, (5.15)

где τf – время свободного пробега;

uf – тепловая скорость быстрых электронов, обладающих энергией, близкой к энергии EF.

Электроны, находящиеся на глубинных уровнях, вероятность заполнения кото­рых равна 1, непосредственно реагировать на внешнее поле не могут, так как все ближайшие энергетические уровни заняты. Однако несмотря на это они участву­ют в процессе электропроводности, перемещаясь на более высокие энергетиче­ские уровни по мере их освобождения. Поле начинает влиять на эти электроны тогда, когда они оказываются вблизи уровня Ферми. Таким образом, под действи­ем поля в движение приходит весь «коллектив» электронов. Скорость движения этого «коллектива» определяется скоростью движения электронов, находящихся вблизи уровня Ферми. С учетом этого обстоятельства выражение для плотности тока принимает вид

, (5.16)

где

– удельная электрическая проводимость.

Учтем, что

. (5.17)

Найдем отсюда

и, подставив найденное значение в (5.16), получим

. (5.18)

Концентрация свободных электронов в чистых металлах различается незначи­тельно. Поэтому удельная электрическая проводимость металлов определяется средней длиной свободного пробега электронов, которая зависит от структуры атомов и типа кристаллической решетки [2, С.61].

В чистых металлах с идеальной кристаллической решеткой единственной причи­ной, ограничивающей длину свободного пробега электронов, являются тепловые колебания атомов в узлах кристаллической решетки, амплитуда которых возрас­тает с ростом температуры. Интенсивность столкновений электронов с атомами, то есть их рассеяние, прямо пропорциональна поперечному сечению сферическо­го объема, занимаемого колеблющимся атомом, и концентрации атомов. Следо­вательно, длина свободного пробега будет равна

. (5.19)

Потенциальная энергия атома, отклонившегося на величину

от узла кристал­лической решетки, определяется соотношением

. (5.20)

Здесь

– коэффициент упругой связи, которая стремится вернуть атом в по­ложение равновесия.

Поскольку средняя энергия колеблющегося атома равна kТ, то

. (5.21)

Решая (5.21) относительно (

)2 и подставляя полученный результат в (5.19), определяем среднюю длину свободного пробега электрона

. (5.22)

Следовательно, удельная электрическая проводимость с ростом температуры уменьшается, а удельное электрическое сопротивление

возрастает. Влия­ние температуры на сопротивление проводника оценивают температурным коэф­фициентом удельного сопротивления

. (5.23)

У большинства металлов при комнатной температуре

0,004 К-1. Если в металле имеются примеси, то помимо рассеяния на основных атомах возникает рассея­ние электронов на примесных атомах, в результате чего уменьшается длина сво­бодного пробега, определяемая соотношением

. (5.24)

Здесь

и
характеризуют рассеяние на тепловых колебаниях основных атомов и примесей соответственно.

Этим объясняется то, что чистые металлы имеют более низкое удельное сопротивление по сравнению со сплавами.

На высоких частотах плотность тока изменяется по сечению проводника. Она максимальна на поверхности и убывает по мере проникновения в глубь проводника. Это явление называется поверхностным эффектом.