Смекни!
smekni.com

Технология конструкционных электротехнических материалов (стр. 6 из 14)

Неравномерное распределение тока объясняется действием магнитного поля тока, протекающего по проводнику. Магнитный поток, сцепленный с проводом, про­порционален току

Ф = Li, (5.25)

где L – индуктивность проводника.

Если ток изменяется по синусоидальному закону i = Im sin ωt, то изменение магнитного потока вызывает появление ЭДС самоиндукции

. (5.26)

Эта ЭДС имеет направление, противоположное току в проводе, и тормозит его изменение в соответствии с законом Ленца.

При прохождении переменного тока переменное магнитное поле возникает как вокруг проводника, так и внутри него. При этом потокосцепление максимально для внутренних слоев и минимально для внешних. Поэтому ЭДС самоин­дукции оказывается максимальной в центре проводника и уменьшается в направ­лении к поверхности. Соответственно, и плотность тока наиболее значительно ослабляется в центральной части проводника и в меньшей степени – у поверхно­сти, иначе говоря, происходит вытеснение тока к поверхности проводника. Оно тем сильнее, чем выше частота [2, С.63].

Распределение плотности тока по сечению проводника подчиняется экспоненци­альному закону

, (5.27)

где j0 – плотность тока на поверхности;

z – расстояние, измеряемое от поверхности;

Δ – глубина проникновения тока.

Глубина проникновения тока, выраженная в миллиметрах, равна расстоянию, на котором плотность тока уменьшается в е = 2,72 раз по отношению к своему значе­нию на поверхности проводника. Она пропорциональна удельному сопротивлению ρ [Ом·м] и обратно пропорциональна частоте f [МГц]

. (5.28)

В случае сильно выраженного поверхностного эффекта, когда ток протекает по тонкому поверхностному слою, толщина которого много меньше диаметра про­вода d, экспоненциальное распределение тока может быть заменено однородным распределением с постоянной плотностью тока в пределах тонкого слоя толщи­ной Д, на основании чего можно ввести понятие эквивалентной площади сечения проводника, занятой током

. (5.29)

Поскольку площадь сечения, через которое протекает ток, уменьшилась, то сопро­тивление провода переменному току R~ стало больше, чем его сопротивление по­стоянному току R0, что учитывают коэффициентом увеличения сопротивления

. (5.30)

Полученная формула справедлива при Δ « d.

Электрические свойства тонких пленок отличаются от свойств объемных провод­ников. Это объясняется изменением структуры проводящих пленок и, соответ­ственно, механизма перемещения электрических зарядов, создающих электрический ток. На рисунке 5.3 показаны три области, соответствующие трем различным механизмам протекания тока. При напылении пленки сначала образуются отдель­ные разрозненные островки (область 1), переход электронов происходит через узкие диэлектрические зазоры, что обусловлено термоэлектронной эмиссией и туннельным эффектом. В этой области удельное сопротивление очень велико, а температурный коэффициент отрицателен, так как с ростом температуры облегчается переход электронов от островка к островку [2, С.64].

По мере напыления пленки происходит образование проводящих цепочек между отдельными остров­ками и начинает работать обычный механизм электропроводности, удель­ное сопротивление пленки уменьша­ется, а температурный коэффициент становится положительным (область 2). При дальнейшем напылении ос­тровки исчезают и образуется сплошная пленка толщиной около 0,1 мкм (область 3). На этом участке удельное сопротивление выше, чем удельное сопротив­ление монолитного проводника, что объясняется размерным эффектом, суть ко­торого состоит в сокращении длины свободного пробега электронов вследствие их отражения от поверхности пленки. Полагая, что процессы рассеяния элект­ронов в объеме и на поверхности независимы, можно для длины свободного про­бега
электронов в пленке записать

. (5.31)

Здесь l и ls – длины свободного пробега электронов при рассеянии в объеме и на поверхности.

Приближенно полагая длину свободного пробега при рассеянии на поверхно­сти lS равной толщине пленки δ, получим

. (5.32)

Здесь ρ – удельное электрическое сопротивление монолитного проводника.

Сопротивление пленки определяется по формуле

, (5.33)

где l – длина проводящей пленки;

S – площадь поперечного сечения пленки.

Учитывая, что S = δω,

где ω – ширина пленки, получаем

. (5.34)

Здесь

– удельное поверхностное сопротивление. Величина ρS равна со­противлению пленки при условии l = ω, то есть ρS представляет собой сопротив­ление пленки, имеющей форму квадрата.

Подбором толщины пленки можно изменять величину ρS независимо от удельно­го сопротивления материала.

В микроэлектронике в качестве соединительных пленок применяют пленки из чистого металла, чаще всего алюминия, а в качестве резистивных пленок – туго­плавкие металлы (вольфрам, тантал, рений, хром, молибден) и сплавы никеля с хромом [2, С.65].

6 Классификация магнитных материалов и требования к ним (вопрос 22)

Магнитными веществами, или магнетиками, называются вещества, обладающие магнитными свойствами. Под магнитными свойствами понимается способность вещества приобретать магнитный момент, т.е. намагничиваться при воздействии на него магнитного поля. В этом смысле все вещества в природе являются магнетиками, так как при воздействии магнитного поля приобретают определенный магнитный момент. Этот результирующий макроскопический магнитный момент М представляет собой сумму элементарных магнитных моментов mi - атомов данного вещества


(6.1)

Элементарные магнитные моменты могут быть либо наведены магнитным полем, либо существовать в веществе до наложения магнитного поля; в последнем случае магнитное поле вызывает их преимущественную ориентацию [2, С.298].

Магнитные свойства различных материалов объясняются движением электронов в атомах, а также тем, что электроны и атомы имеют постоянные магнитные моменты.

Вращательное движение электронов вокруг ядер атомов аналогично действию некоторого контура электрического тока и создает магнитное поле, которое на достаточном расстоянии представляется как поле магнитного диполя с магнитным моментом, значение которого определяется произведением тока и площади контура, который ток обтекает. Магнитный момент является векторной величиной и направлен от южного полюса к северному. Такой магнитный момент называется орбитальным.

Сам электрон имеет магнитный момент, который называется спиновым магнитным моментом.

Атом представляет собой сложную магнитную систему, магнитный момент которой является результирующей всех магнитных моментов электронов, протонов и нейтронов. Так как магнитные моменты протонов и нейтронов существенно меньше, чем магнитные моменты электронов, магнитные свойства атомов по существу определяются магнитными моментами электронов. У имеющих техническое значение материалов это прежде всего спиновые магнитные моменты [2,С.298].

Результирующий магнитный момент атома при этом определяется векторной суммой орбитальных и спиновых магнитных моментов отдельных электронов в электронной оболочке атомов. Эти два вида магнитных моментов могут быть частично или полностью взаимно скомпенсированы.

В соответствии с магнитными свойствами материалы делятся на следующие группы:

а) диамагнитные (диамагнетики),

б) парамагнитные (парамагнетики),

в) ферромагнитные (ферромагнетики),

г) антиферромагнитные (антиферромагнетики),

д) ферримагнитные (ферримагнетики),

е) метамагнитные (метамагнетики).

А) Диамагнетики

Диамагнетизм проявляется в намагничивании вещества навстречу направлению действующего на него внешнего магнитного поля.

Диамагнетизм свойствен всем веществам. При внесении какого-либо тела в магнитное поле в электронной оболочке каждого его атома, в силу закона электромагнитной индукции, возникают индуцированные круговые то­ки, т. е. добавочное круговое движение электронов вокруг направления магнитного поля. Эти токи создают в каждом атоме индуцированный магнитный момент, направленный, согласно правилу Ленца, навстречу внешнему магнитному полю (независимо от того, имелся ли первоначально у атома собственный магнитный момент или нет и как он был ориентирован). У чисто диамагнитных веществ электронные оболочки атомов (молекул) не обладают постоянным маг­нитным моментом. Магнитные моменты, создаваемые отдельными электронами в таких атомах, в отсутствие внешнего маг­нитного поля взаимно скомпенсированы. В частности, это имеет место в атомах, ионах и молекулах с целиком заполнен­ными электронными оболочками в атомах инертных газов, в молекулах водорода, азота.