Конечно-элементное моделирование процесса деформирования проводилось с помощью программы ANSYS, предназначенной для проведения анализа в широком круге инженерных дисциплин (прочность, теплофизика, динамика жидкостей и газов и электромагнетизм). В ходе конечно-элементного моделирования процесса деформирования заготовки из стали 40Х получены результаты в виде полей распределения напряжений и деформаций по сечению заготовки, эпюр распределения контактных напряжений (рисунок 2), а также в виде листингов, где приведены числовые значения указанных величин во всех узлах.
а)
б)в)
г)а и б – Распределение гидростатического давления s0 и степени деформации сдвига Г по поперечному сечению заготовки;
в и г – Распределение давления и напряжения трения на контактной поверхности;
Рисунок 2 – Графическое представление результатов конечно-элементного моделирования при uг/uв=3
В результате конечно-элементного моделирования установлено, что при малых значениях коэффициента трения, когда не обеспечивается достаточного сцепления между заготовкой и рабочей поверхностью инструмента, увеличение соотношения uг/uв не приводит к сдвигу заготовки. В связи с этим деформирование заготовки по указанной схеме необходимо осуществлять инструментом с грубо обработанной рабочей поверхностью без применения смазки. Сравнительный анализ распределения гидростатического давления по сечению заготовки показывает, что при всех значениях соотношения uг/uв по поперечному сечению в основном преобладают сжимающие напряжения. Схема всестороннего сжатия, обеспечиваемая в большей части поперечного сечения, особенно в осевых зонах, гарантирует отсутствие макро- и микротрещин в кованом металле и благоприятствует максимальной степени пластичности деформируемой заготовки. Наряду с этим можно заметить, что зоны, прилегающие к свободным поверхностям заготовки, находятся под воздействием растягивающих напряжений. При увеличении соотношения uг/uв площадь зон, находящиеся под воздействием растягивающих напряжений, и значения самих напряжений увеличиваются. Это может привести к вскрытию металла и появлению трещин в указанных зонах. Поэтому для обеспечения целостности металла необходимо ограничить соотношения uг/uв. Анализ распределения степени деформации сдвига Г по поперечному сечению заготовки показывает, что при всех значениях соотношения uг/uв интенсивные сдвиговые деформации локализованы вдоль короткой диагонали поперечного сечения. С увеличением соотношения uг/uв возрастают максимальные степени деформации сдвига. Максимальные значения степени деформации сдвига для всех значений соотношения uг/uв расположены в осевой зоне заготовки, что обуславливает их интенсивную проработку. Таким образом, увеличение соотношения uг/uв обуславливает развитие интенсивной сдвиговой деформации в объеме металла заготовки. Вблизи свободных поверхностей и некоторых участках контактной поверхности имеются зоны затрудненной деформации, где значения Г минимальны. Путем кантовки заготовки в последующих этапах деформирования зоны интенсивных сдвиговых деформации можно распространить во все участки заготовки.
Анализ распределения напряжений на контактной поверхности показывает, что с увеличением соотношения uг/uв происходит смещение линии раздела пластического течения от середины и постепенно реализуется однопоточная схема течения металла, что обуславливает более интенсивное развитие сдвиговых деформаций в объеме металла. Для оценки энергосиловых параметров процесса по значениям давлений на контактной поверхности и напряжений контактного трения вычислены деформирующее усилие, приходящееся на единицу длины заготовки. График изменения деформирующего усилия (рисунок 3, а) показывает, что при uг/uв=2 и uг/uв=3 (кривые 2 и 3) значение деформирующего усилия почти в два раза ниже чем при uг/uв=1 и при осадке. Такое снижение значений деформирующего усилия с увеличением uг/uв связано с уменьшением площади контакта при отрыве части поверхности заготовки от инструмента и меньшими значениями давления на контактной поверхности при реализации интенсивной сдвиговой деформации. Вместе с тем при деформировании по рассматриваемой схеме возникает горизонтальная сила, которая возрастает с увеличением соотношения uг/uв (рисунок 3, б).
а)
б)0 - uг/uв=0 (осадка); 1 - uг/uв=1; 2 - uг/uв=2; 3 - uг/uв=3
Рисунок 3 – Изменение усилий деформирования (а) и горизонтальной силы (б) в ходе нагружения
Сопоставление показателей напряженно-деформированного состояния заготовки и энергосиловых параметров процесса при различных значениях uг/uв показывает, что наиболее лучшие показатели получаются при соотношениях uг/uв=2¸3 и деформировании заготовки инструментом с грубо обработанной рабочей поверхностью без применения смазки. Дальнейшее увеличение uг/uв может быть ограничено, из-за возможного опрокидывания заготовки при интенсивном отрыве поверхности заготовки от поверхности инструмента. Результаты конечно-элементного моделирования процесса деформирования заготовок можно применить в целях создания теоретической базы данных для возможных случаев их реализации в практической деятельности различными инструментами.
Для реализации интенсивных сдвиговых деформации заготовки по вышеуказанной схеме деформирования предложен кузнечный инструмент с плоскими рабочими поверхностями (рисунок 4), который отличается от существующих инструментов отсутствием сложных узлов, что улучшает его монтаж, наладку и эксплуатацию.
Инструмент работает следующим образом. В исходном положении (рисунок 4, а) бойки разведены, и заготовка 4 подается между ними. При ходе ползуна пресса вниз верхний боек 1 через рабочую вставку 2 давит на заготовку 4, в результате противодействия со стороны заготовки 4 рабочая вставка 2 перемещается по наклонной плоскости верхнего бойка 1. Благодаря этому поверхности соприкосновения рабочей вставки 2 и нижнего бойка 5 воздействуют на обрабатываемую заготовку 4 как в нормальном, так и в касательном направлениях, вызывая одновременно её обжатие и поперечный сдвиг за счет противоположно направленных сил контактного трения со стороны рабочей вставки 2 и нижнего бойка 5. После достижения необходимого сдвига заготовки (рисунок 4, б) верхний боек с рабочей вставкой поднимается вместе с ползуном пресса, а пружины 3 возвращают рабочую вставку 2 в исходное положение.
а)
б)1 – верхний боек; 2 – рабочая вставка; 3 – удерживающие пружины;
4 – деформируемая заготовка; 5 – нижний боек;
а) – исходное положение; б) – конечное положение.
Рисунок 4 – Схема деформирования инструментом, реализующий интенсивные сдвиговые деформации заготовки
Перемещение рабочей вставки uр.в. при деформировании заготовки можно разложить на горизонтальные иг и вертикальные ив составляющие, при определенных соотношениях иг/ив которых как было установлено выше происходит наиболее лучше деформирование заготовки. Обеспечение требуемых значений соотношений иг/ив зависит от конструктивных параметров инструмента, машинного трения между рабочей вставкой и верхним бойком, деформационного трения между заготовкой и рабочей вставкой, реологических свойств материала, обрабатываемой заготовки.
a > aтр. (1)
где a – угол наклона соприкасающихся поверхностей верхнего бойка и рабочей вставки;