Смекни!
smekni.com

Проект вертикально-фрезерного станка 6Р12П (стр. 4 из 6)

В пятой двухваловой передаче (z21 / z22)

По данной скорости выбираем 6-ю степень точности.

Проверка прочности зубьев по напряжениям изгиба [5]

σF2 = KFa * KFb * KFv * Yb * YF1 * FtЕ / (b2 * m), (14)


где KFa – для прямозубых колёс = 1;

KFb – коэф-т концентрации нагрузки для прирабатываемых колёс = 1;

KFv – коэф-т динамической нагрузки = 1,8;

Yb = 1;

YF1 – коэффициент формы зуба = 3,61;

FtЕ (FtЕ = KFД * Ft2) – эквивалентная окружная сила = 41,8 Н;

σF2 = 1 * 1 * 1,8 * 1 * 3,61 * 41,8 / (44 * 4) = 1,54 МПа < 350 МПа

σF1 = σF2 * YF2 / YF1

σF1 = 1,54 * 3,8 / 3,61 = 1,62 МПа

Проверка прочности зубьев по контактным напряжениям [5]

, (15)

где Кнv – зависит от окружной скорости колеса и его степени точности принимаем = 1,36;

Кн = Кнv * Кнв

где Кнв – при постоянной нагрузке = 1;

Епр – приведённый модуль упругости = 2,1*103;

Расчет и конструирование валов

Выбор материала валов

Для правильного выбора материала валов и термообработки необходимо знать: тип в которых вращается вал, характер посадок на валу подшипников, зубчатых колёс, характер действующих нагрузок.

Первый вал: быстроходный, вращается в подшипниках качения. Принимаем Сталь 35 нормализованную, σв = 520 МПа, σ-1 = 260 МПа, σт = 310 МПа, τ-1 = 130 Мпа, ψв = 0, ψт = 0.

Шестерня 2 посажена на вал при помощи шпонки по переходной посадке.

Второй вал имеет шлицы по которым перемещается блок шестерён z3-z4-z5. Вал вращается в подшипниках качения. Для обеспечения износостойкости трущихся частей принимаем материал вала Сталь 45. Термообработка – цементация и закалка HRC 54-60. σв = 900 МПа, σ-1 = 380 МПа, σт = 650 МПа, τ-1 = 230 Мпа, ψв = 0,1, ψт = 0,05.

Третий вал: тихоходный, вращается в подшипниках качения. Шестерни 7, 8, 9, 13, 14 посажены на вал при помощи шпонок по переходным посадкам. Принимаем материал вала Сталь 35 нормализованную, σв = 520 МПа, σ-1 = 260 МПа, σт = 310 МПа, τ-1 = 130 Мпа, ψв = 0, ψт = 0.

Четвертый вал имеет шлицы по которым перемещается блоки шестерён z10-z11-z12 и z15-z17. Вал вращается в подшипниках качения. Для обеспечения износостойкости трущихся частей принимаем материал вала Сталь 45. Термообработка – цементация и закалка HRC 54-60. σв = 900 МПа, σ-1 = 380 МПа, σт = 650 МПа, τ-1 = 230 Мпа, ψв = 0,1, ψт = 0,05.

Пятый вал представляет собой горизонтальный шпиндель, вращается в подшипниках качения. Блок шестерён 16-18 и коническая шестерня 19 неподвижно закреплёны на валу при помощь шпонок по переходным посадкам. Принимаем Сталь 50.

Шестой вал: быстроходный, вращается в подшипниках качения. Коническая шестерня 20 и зубчатое колесо 21 закреплены на валу при помощь шпонок и стопорных колец. Принимаем Сталь 35 нормализованную, σв = 520 МПа, σ-1 = 260 МПа, σт = 310 МПа, τ-1 = 130 Мпа, ψв = 0, ψт = 0.

Седьмой вал: быстроходный, вращается в подшипниках качения. Зубчатое колесо 22 закреплено на валу при помощь шпонки и стопорного кольца. Принимаем Сталь 35 нормализованную, σв = 520 МПа, σ-1 = 260 МПа, σт = 310 МПа, τ-1 = 130 Мпа, ψв = 0, ψт = 0.

Проверочный расчёт VII вала

Выбор расчётной схемы

Выбор расчётной схемы и определение расчётных нагрузок [5]

Ft2 = 2*T1 / d1, (16)

Fφ = Ft2 * tg aw, (17)

Ft2 = 2 * 1482, / 82,5 = 3593,9 H

Fφ = 3593,9 * tg 20o = 1308,1 H

Определение опорных реакций и изгибающих моментов

Вертикальные:

ΣМа = 0:

Fφ * 283 – Вв * 700 = 0

Вв = Fφ * 283 / 700 = 528,8 Н.

ΣМв = 0:

- Fφ * 417 + Ав * 700 = 0

Ав = Fφ * 417 / 700 = 779,3

Мг = Fφ * (283 * 417) / 700 = 220,53 Н*м

Горизонтальные:

ΣМа = 0:

Ft * 283 – Вв * 700 = 0

Вв = Fφ * 283 / 700 = 1453,8 Н.

ΣМв = 0:

- Ft * 417 + Ав * 700 = 0

Ав = Fφ * 417 / 700 = 2142,1 Н

Мг = Ft * (283 * 417) / 700 = 437,5 Н*м

Расчёт на прочность

Расчёт на сопротивление усталости

Запас сопротивления усталости [5]

S = Sσ * Sτ / (Sσ2 + Sτ2)0,5 ≥ [S] = 1,5, (18)

где Sσ – запас сопротивления усталости по изгибу;

Sτ – запас сопротивления усталости по кручению

σм = 0; σа = 23,8 МПа; τм = τа = 6,01 МПа; ψσ = 0,1; ψτ = 0,05;

σ-1 и τ-1 – пределы выносливости

σ-1 = 0,4 * σв = 0,4 * 520 = 208 МПа

τ-1 = 0,2 * σв = 0,2 * 520 = 104 МПа

Кσ = 2,5; Кτ = 1,8 - коэффициенты концентрации напряжений

Кd = 0,8; КF = 1 – масштабный фактор и фактор шероховатости

Sσ = 208 / 23,8 * 2,5 / (0,8 * 1) + 0,1 * 0 = 2,79

Sτ = 104 / 6,01 * 1,8 / (0,8 * 1) + 0,05 * 6,01 = 7,52

S = 2,79 * 7,52 / (2,792 + 7,522)0,5 = 1,6 ≈ 1,5

Проверка статической прочности

Эквивалентное напряжение

σэкв = (σ2 + 3*τ2)0,5 ≤ [σ], (19)

где σи = 23,8 МПа; τ = 3,79 МПа; [σ] = 0,8*σт = 248 МПа

σэкв = (23,82 + 3 * 3,792)0,5 = 24,7 МПа

Проверка прочности шлицевого соединения

Проверка прочности по смятию

σсм = 2 * Т / d * h * z * l , (20)

где h = 0,5 * (D - d) – 2*f – рабочая высота зуба

Шлицевое соединение: z = 8; D = 60; d = 53; f = 0,5

dcp = 0,5 * (60 + 53) = 56,5 мм

σсм = 2 * 502,6 / 53 * 2,5 * 8 * 205 = 2,65 МПа

Конструирование развёртки коробки скоростей

При конструирований литой корпусной детали стенки следует выполнять одинаковой толщины.

Толщина стенки отвечающая требованиям технологии литья и жёсткости корпуса ε ≥ 6 мм. [5]

ε = 2,6 * (0,1 * Т)0,25 = 2,6 * (0,1 * 1715,9)0,25 = 9,4 мм, (21)

Принимаем толщину стенки равной 10 мм.

Зазор между внутренней поверхностью стенки корпуса и вращающимися частями механизма

Δ = L0,33 + 4 = 3600,33 + 4 = 11,11 мм , (22)

Принимаем Δ = 12 мм.

Длина блоков шестерён складывается из: ширины ступиц зубчатых колёс, ширина «а», канавки для выхода долбяка и т.д.

Рис. 3 Зубчатое колесо


Рис. 4 Эскиз шлицевого вала

Расчёт шпинделя

Основные требования

Шпиндель - одна из наиболее ответственных деталей станка. Он является последним звеном коробки скоростей, несущим заготовку или инструмент. От него во многом зависит точность обработки. Шпиндельные узлы предназначены для осуществления точного вращения инструмента или обрабатываемой детали.

К шпиндельным узлам станков предъявляются следующие требования:

1. Точность вращения, измеряемая биением на переднем конце шпинделя в радиальном или осевом направлении.

2. Жёсткость шпиндельного узла определяемая по упругим перемещениям переднего конца шпинделя.

3. Виброустойчивость шпиндельного узла, существенно влияющая на устойчивость всего станка.

4. Долговечность шпиндельных узлов.

5. Ограничение тепловыделения и температурных деформаций, которые сильно влияют на точность обработки.

6. Быстрое и надёжное закрепление инструмента или заготовки, обеспечивающее их точное центрирование и соответственно точное вращение.

Материал и термическая обработка.

Решающим фактором, определяющим выбор материала шпинделя, является: твёрдость и износостойкость шеек и базирующих поверхностей фланцев и стабильность размеров и формы шпинделя в процессе его работы и изготовления.

Для шпинделей станков нормальной и повышенной точности, имеющим конусные отверстия, фланцы, пазы применяется объёмная закалка, обеспечивающая твёрдость в пределах HRC 56 – 60. В этом случае шпиндель изготавливают из Сталь 50Х.

Выбор конструктивного варианта шпиндельного узла

В вертикально-фрезерном станке, как правило, применяются трёхопорные шпиндели, с целью увеличения демпфирования в шпиндельном узле.

В нашем случае применим к нижней опоре сдвоенный конический роликовый подшипник качения, а в верхней опоре – одинарный роликовый подшипник.

Данная схема обеспечивает достаточную жёсткость, виброустойчивость и стабильность наложения оси при вращении шпинделя.

Расчёт шпинделя на жёсткость

Определим упругие перемещения в месте резания, вызываемые собственно упругими деформациями шпинделя и его опор.

Рассчитаем шпиндель при максимальном вылете гильзы. Так как в нижней опоре принят роликовый подшипник, то можно считать, что шпиндель в этом сечении не имеет поворота. В этом положении будем считать шпиндель как жёстко закреплённую балку.

а – максимальный вылет гильзы

Θ – угол прогиба

у – прогиб

Р – сила резания

Р = (Рх2 + Рz2)0,5, (23)


где Рх – осевая составляющая силы резания,

Рz – тангенциальная составляющая силы резания.

Рz = 9,81 * Cp * tx * Szy * Bu * z * Kp / Dq * nw, (24)

Принимаем коэффициенты, входящих в формулу для концевых фрез, с пластинами из т/с.

Ср = 234; х = 0,24; q = 0,44; y = 0,26; u = 0,1; m =0,37; Sz = 0,1; t = 5 мм; Kp = 0,856

Рz = 19702 / 4,59 = 4292,4 H

Имеет место соотношение между силами резания

Рх / Рz = 1 / 3

Но в процессе износа задней поверхности лезвий силы практически уравновешиваются и имеет место соотношение Рх / Рz = 2 / 3.

Принимаем Рх = 2861,6 Н

Р = (4292,42 + 2861,62)0,5 = 5159,0 Н

Уmax = p*a3 / 3*E*J

Θmax = p*a2 / 2*E*J

где J – момент инерции сечения шпинделя

J = pi*D4 / 64 *(1 - ά)

J = 3,14 * 704 / 64 * (1 – 0,43) = 1415,8 H