Смекни!
smekni.com

Материаловедение 5 (стр. 12 из 16)

Ручная дуговая сварка достаточно трудоемка, для ее проведения требуются высококвалифицированные сварщики, поскольку ка­чество сварных швов во многом зависит от их навыков и способ­ностей. Скорость ручной дуговой сварки не превышает 1,6 м/ч.

При автоматической сварке обеспечивается автоматическое зажигание дуги, автоматически поддерживается стабильный режим ее горения в процессе сварки. Кроме того, механизиру­ются подача электродной проволоки в сварочную ванну по мере расходования электрода и передвижение дуги вдоль шва. Если механизировано только одно движение, а второе — выполняет сварщик, то имеет место полуавтоматическая сварка.

Наиболее часто применяется автоматическая сварка под слоем флюса (рис. 68). Дуга при этом горит в газовом пузыре, образо­ванном парами металла и компонентами флюса. Флюс поступает в зону сварки из бункера. Часть флюса, окружающего дугу, рас­плавляется, образуя на поверхности расплавленного металла ванну жидкого шлака.

2
Рис. 68. Схема автоматической сварки под слоем флюса: 1 — свариваемый металл; 2 — стержень электрода; 3 —• расплавленный флюс; 4 — сварной шов; 5 — шлаковая корка

Образовавшаяся после затвердевания расплава шлаковая корка легко удаляется. Благодаря такой за­щите снижаются потери тепла на излучение, уменьшаются угар и разбрызгивание металла, снижаются термические напряжения. Кроме того, флюс защищает дугу и сварочную ванну от влияния окружающей атмосферы и обеспечивает хорошее формирование шва. При автоматической сварке под слоем флюса производи­тельность повышается в 5... 10 раз по сравнению с ручной дуго­вой сваркой.

Сварку под слоем флюса проводят автоматическими свароч­ными аппаратами (рис. 69), перемещающимися непосредствен­но по изделию. Сварочная головка 5 подает с катушки 3 в зону горения дуги 1 электродную проволоку 4. Сварочная дуга обра­зуется между основным металлом и электродной проволокой. По мере образования сварного шва сварочная головка автомати­чески перемещается вдоль стыка свариваемых изделий. Гранули­рованный флюс из бункера 2 непрерывно засыпается в разделку шва перед дугой. При горении дуги основной металл и электрод­ная проволока расплавляются под слоем флюса. Часть флюса от соприкосновения с дугой расплавляется и при остывании об­разует твердую корку, покрывающую шов. Флюс, оставшийся поверх корки, отсасывается обратно в бункер через трубку 6.

Автоматическую сварку под слоем флюса применяют пре­имущественно для сварки прямолинейных и кольцевых швов. При этом толщина свариваемых металлов составляет 2...100 мм. Сваривать можно углеродистые и легированные стали, медные и алюминиевые сплавы, титан.

Электродную проволоку выбирают в зависимости от марки и состава свариваемого материала. Скорость сварки 30...50 м/ч. Напряжение на дуге 22...55 В.

Флюс для автоматической сварки должен обеспечить устой­чивое горение дуги, хорошее формирование и достаточные ме­ханические свойства сварного шва. При плавлении флюса не должны выделяться в большом количестве вредные газы и дым. Для сварки, например, низкоуглеродистых сталей применяют флюсы, содержащие марганцевую руду, плавиковый шпат, квар­цевый песок и ферросилиций. Иногда в состав флюсов для улуч­шения их технологических свойств вводят фторид кальция CaF2.

1 — зона горения дуги; 2 — бункер для гранулированного флюса; 3 — ка­тушка с электродной проволокой; 4 — электродная проволока; 5 — свароч­ная головка; 6 — трубка для отсоса флюса; 7 — шлаковая корка

Для защиты свариваемого металла от воздействия кислорода и азота воздуха часто применяют дуговую сварку в защитных газах. В качестве защитных газов используют аргон, гелий, уг­лекислый газ. Эти способы обеспечивают лучшее качество свар­ных швов, чем при сварке на открытом воздухе.

Аргон и гелий — инертные газы, которые химически не взаи­модействуют с расплавами металлов и не растворяются в них. Их используют для сварки химически активных металлов (магния, титана, алюминия и др.), а также высоколегированных сталей.

Сварку в углекислом газе применяют для соединения загото­вок из конструкционных углеродистых сталей. В отдельных слу­чаях используют смеси газов, которые обеспечивают лучшие технологические свойства сварных швов.

Защитные газы поставляют в баллонах емкостью 40 л под давлением 15 МПа (аргон, гелий) и 6...7 МПа (углекислый газ).

Наибольшее промышленное применение имеет аргонодуговая сварка. Обычно она выполняется неплавящимся вольфрамовым электродом 3 (рис. 70), установленным в мундштуке 4 специ­альной горелки. Через горелку пропускают аргон (или гелий), который создает вокруг зоны сварки защитную газовую оболочку. Возбуждение электрической дуги 6 происходит между электро­дом и свариваемой деталью 1. Для заполнения жидким металлом ванны в зону сварки вводят присадочный пруток 2, химический состав которого близок к составу свариваемой стали. Аргон по­дается в горелку под давлением 0,3...0,5 МПа.

.3
Рис. 70. Схема аргонодуговой сварки: 1 — свариваемая деталь; 2 — присадочный пруток; 3 — вольфрамовый электрод; 4 — мундштук; 5 — поток аргона; 6 — электрическая дуга; 7 — расплавленный металл

Большинство металлов сваривают на постоянном токе пря­мой полярности. Такое включение («плюс» на изделии) обеспечи­вает более высокую стойкость вольфрамового электрода. Поэтому, например, при диаметре электрода 3 мм при прямой полярно­сти допускается сила тока 140...280 А, а при обратной — только 20...40 А. При обратной полярности резко повышается нагрев электродов и их расход. Это объясняется тем, что в электриче­ской дуге наибольшее количество теплоты выделяется на аноде. Поэтому для сварки многих цветных металлов используют пе­ременный ток.

Сварка вольфрамовым электродом может выполняться в руч­ном режиме или же с помощью специальных полуавтоматиче­ских и автоматических установок. Напряжение на дуге 12...16 В, сварочный ток 120...160 А, расход аргона 6...7 л/мин. Автома­тическую сварку вольфрамовым электродом применяют для со­единения заготовок сравнительно небольшой толщины — до 4 мм, без разделки кромок.

Тема 5.4. Газовая сварка и резка металла.

При газовой сварке кромки металла и присадочный матери­ал нагреваются пламенем, получаемым при сгорании горючих газов в кислороде.

В качестве горючих можно использовать ацетилен, природ­ные газы, пары бензина и керосина и др. Сварочное пламя долж­но иметь максимально высокую температуру, быть экономичным и нейтральным по отношению к жидкому металлу. Наиболее часто используют ацетилен С2Н2, поскольку он имеет наиболь­шую теплоту сгорания, температура пламени при горении в чис­том кислороде 3150 °С.

Кислород, необходимый для проведения газосварочных ра­бот, получают обычно из воздуха методом его сжижения при очень глубоком охлаждении. Хранят и транспортируют кислород в спе­циальных баллонах емкостью 40 л под давлением 15 МПа. В од­ном баллоне содержится около 6 м3 кислорода. Кислородные баллоны окрашивают в голубой цвет. Баллоны подлежат испы­танию каждые 5 лет.

Обычно ацетилен получают непосредственно на месте произ­водства сварочных работ из карбида кальция при взаимодейст­вии его с водой по реакции

СаС2 + 2НаО = С2Н2Т + Са(ОН)2

Из 1 кг карбида кальция можно получить около 320 л ацети­лена. Для получения ацетилена используются специальные аце­тиленовые генераторы.

Для сварки можно использовать и ацетилен из баллонов, где он находится в растворенном виде. Баллоны для ацетилена за­полняют специальным активированным древесным углем, про­питанным ацетоном. Ацетилен хорошо растворяется в ацетоне и перестает быть взрывоопасным. В баллонах ацетилен нахо­дится под давлением 1,5... 1,6 МПа. При избыточном давлении выше 1,75 МПа ацетилен взрывоопасен. Ацетиленовые баллоны окрашивают в белый цвет.

Сварку проводят при непосредственном питании от генератора или от ацетиленового баллона. Для понижения давления сжатого газа, забираемого из баллонов, применяют специальные редук­торы. Они поддерживают давление на выходе из баллона посто­янным независимо от давления газа в баллоне. Кислородные редукторы могут устанавливать давление от 0,3 до 1,5 МПа, ацетиленовые — от 0,02 до 0,05 МПа. Редукторы, применяемые при газовой сварке, обычно имеют два манометра, один показы­вает давление газа в баллоне, а другой — давление газа на выхо­де из редуктора, т.е. рабочее давление газа.

Посты газовой сварки бывают стационарными и передвиж­ными. Питание стационарных постов осуществляется обычно от ацетиленового генератора и баллонов с кислородом, а пере­движных — от баллонов с кислородом и ацетиленом.

Схема оборудования для передвижного газосварочного поста показана на рис. 75, а. Ацетилен и кислород по специальным шлангам 1 и 3 от баллонов, снабженных регуляторами давления газа (редукторами и манометрами) 2, подводятся к газовой го­релке .

Рис. 75. Оборудование для передвижного газосварочного поста (а) и схема инжекторной горелки (б): 1,3 — шланги подачи соответственно ацетилена и кислорода; 2 — регуля­торы давления газа; 4 — сварочная горелка; 5 — вентили; 6 — инжектор; 7 — смесительная камера; 8 — наконечник горелки; 9 — мундштук

Дозировка и смешивание кислорода и ацетилена происходит в сварочной горелке. Наибольшее распространение в промыш­ленности получили инжекторные горелки, работающие на прин­ципе засасывания ацетилена (рис. 75, б).