Ручная дуговая сварка достаточно трудоемка, для ее проведения требуются высококвалифицированные сварщики, поскольку качество сварных швов во многом зависит от их навыков и способностей. Скорость ручной дуговой сварки не превышает 1,6 м/ч.
При автоматической сварке обеспечивается автоматическое зажигание дуги, автоматически поддерживается стабильный режим ее горения в процессе сварки. Кроме того, механизируются подача электродной проволоки в сварочную ванну по мере расходования электрода и передвижение дуги вдоль шва. Если механизировано только одно движение, а второе — выполняет сварщик, то имеет место полуавтоматическая сварка.
Наиболее часто применяется автоматическая сварка под слоем флюса (рис. 68). Дуга при этом горит в газовом пузыре, образованном парами металла и компонентами флюса. Флюс поступает в зону сварки из бункера. Часть флюса, окружающего дугу, расплавляется, образуя на поверхности расплавленного металла ванну жидкого шлака.
2 Рис. 68. Схема автоматической сварки под слоем флюса: 1 — свариваемый металл; 2 — стержень электрода; 3 —• расплавленный флюс; 4 — сварной шов; 5 — шлаковая корка |
Образовавшаяся после затвердевания расплава шлаковая корка легко удаляется. Благодаря такой защите снижаются потери тепла на излучение, уменьшаются угар и разбрызгивание металла, снижаются термические напряжения. Кроме того, флюс защищает дугу и сварочную ванну от влияния окружающей атмосферы и обеспечивает хорошее формирование шва. При автоматической сварке под слоем флюса производительность повышается в 5... 10 раз по сравнению с ручной дуговой сваркой.
Сварку под слоем флюса проводят автоматическими сварочными аппаратами (рис. 69), перемещающимися непосредственно по изделию. Сварочная головка 5 подает с катушки 3 в зону горения дуги 1 электродную проволоку 4. Сварочная дуга образуется между основным металлом и электродной проволокой. По мере образования сварного шва сварочная головка автоматически перемещается вдоль стыка свариваемых изделий. Гранулированный флюс из бункера 2 непрерывно засыпается в разделку шва перед дугой. При горении дуги основной металл и электродная проволока расплавляются под слоем флюса. Часть флюса от соприкосновения с дугой расплавляется и при остывании образует твердую корку, покрывающую шов. Флюс, оставшийся поверх корки, отсасывается обратно в бункер через трубку 6.
Автоматическую сварку под слоем флюса применяют преимущественно для сварки прямолинейных и кольцевых швов. При этом толщина свариваемых металлов составляет 2...100 мм. Сваривать можно углеродистые и легированные стали, медные и алюминиевые сплавы, титан.
Электродную проволоку выбирают в зависимости от марки и состава свариваемого материала. Скорость сварки 30...50 м/ч. Напряжение на дуге 22...55 В.
Флюс для автоматической сварки должен обеспечить устойчивое горение дуги, хорошее формирование и достаточные механические свойства сварного шва. При плавлении флюса не должны выделяться в большом количестве вредные газы и дым. Для сварки, например, низкоуглеродистых сталей применяют флюсы, содержащие марганцевую руду, плавиковый шпат, кварцевый песок и ферросилиций. Иногда в состав флюсов для улучшения их технологических свойств вводят фторид кальция CaF2.
1 — зона горения дуги; 2 — бункер для гранулированного флюса; 3 — катушка с электродной проволокой; 4 — электродная проволока; 5 — сварочная головка; 6 — трубка для отсоса флюса; 7 — шлаковая коркаДля защиты свариваемого металла от воздействия кислорода и азота воздуха часто применяют дуговую сварку в защитных газах. В качестве защитных газов используют аргон, гелий, углекислый газ. Эти способы обеспечивают лучшее качество сварных швов, чем при сварке на открытом воздухе.
Аргон и гелий — инертные газы, которые химически не взаимодействуют с расплавами металлов и не растворяются в них. Их используют для сварки химически активных металлов (магния, титана, алюминия и др.), а также высоколегированных сталей.
Сварку в углекислом газе применяют для соединения заготовок из конструкционных углеродистых сталей. В отдельных случаях используют смеси газов, которые обеспечивают лучшие технологические свойства сварных швов.
Защитные газы поставляют в баллонах емкостью 40 л под давлением 15 МПа (аргон, гелий) и 6...7 МПа (углекислый газ).
Наибольшее промышленное применение имеет аргонодуговая сварка. Обычно она выполняется неплавящимся вольфрамовым электродом 3 (рис. 70), установленным в мундштуке 4 специальной горелки. Через горелку пропускают аргон (или гелий), который создает вокруг зоны сварки защитную газовую оболочку. Возбуждение электрической дуги 6 происходит между электродом и свариваемой деталью 1. Для заполнения жидким металлом ванны в зону сварки вводят присадочный пруток 2, химический состав которого близок к составу свариваемой стали. Аргон подается в горелку под давлением 0,3...0,5 МПа.
.3 Рис. 70. Схема аргонодуговой сварки: 1 — свариваемая деталь; 2 — присадочный пруток; 3 — вольфрамовый электрод; 4 — мундштук; 5 — поток аргона; 6 — электрическая дуга; 7 — расплавленный металл |
Большинство металлов сваривают на постоянном токе прямой полярности. Такое включение («плюс» на изделии) обеспечивает более высокую стойкость вольфрамового электрода. Поэтому, например, при диаметре электрода 3 мм при прямой полярности допускается сила тока 140...280 А, а при обратной — только 20...40 А. При обратной полярности резко повышается нагрев электродов и их расход. Это объясняется тем, что в электрической дуге наибольшее количество теплоты выделяется на аноде. Поэтому для сварки многих цветных металлов используют переменный ток.
Сварка вольфрамовым электродом может выполняться в ручном режиме или же с помощью специальных полуавтоматических и автоматических установок. Напряжение на дуге 12...16 В, сварочный ток 120...160 А, расход аргона 6...7 л/мин. Автоматическую сварку вольфрамовым электродом применяют для соединения заготовок сравнительно небольшой толщины — до 4 мм, без разделки кромок.
Тема 5.4. Газовая сварка и резка металла.
При газовой сварке кромки металла и присадочный материал нагреваются пламенем, получаемым при сгорании горючих газов в кислороде.
В качестве горючих можно использовать ацетилен, природные газы, пары бензина и керосина и др. Сварочное пламя должно иметь максимально высокую температуру, быть экономичным и нейтральным по отношению к жидкому металлу. Наиболее часто используют ацетилен С2Н2, поскольку он имеет наибольшую теплоту сгорания, температура пламени при горении в чистом кислороде 3150 °С.
Кислород, необходимый для проведения газосварочных работ, получают обычно из воздуха методом его сжижения при очень глубоком охлаждении. Хранят и транспортируют кислород в специальных баллонах емкостью 40 л под давлением 15 МПа. В одном баллоне содержится около 6 м3 кислорода. Кислородные баллоны окрашивают в голубой цвет. Баллоны подлежат испытанию каждые 5 лет.
Обычно ацетилен получают непосредственно на месте производства сварочных работ из карбида кальция при взаимодействии его с водой по реакции
СаС2 + 2НаО = С2Н2Т + Са(ОН)2
Из 1 кг карбида кальция можно получить около 320 л ацетилена. Для получения ацетилена используются специальные ацетиленовые генераторы.
Для сварки можно использовать и ацетилен из баллонов, где он находится в растворенном виде. Баллоны для ацетилена заполняют специальным активированным древесным углем, пропитанным ацетоном. Ацетилен хорошо растворяется в ацетоне и перестает быть взрывоопасным. В баллонах ацетилен находится под давлением 1,5... 1,6 МПа. При избыточном давлении выше 1,75 МПа ацетилен взрывоопасен. Ацетиленовые баллоны окрашивают в белый цвет.
Сварку проводят при непосредственном питании от генератора или от ацетиленового баллона. Для понижения давления сжатого газа, забираемого из баллонов, применяют специальные редукторы. Они поддерживают давление на выходе из баллона постоянным независимо от давления газа в баллоне. Кислородные редукторы могут устанавливать давление от 0,3 до 1,5 МПа, ацетиленовые — от 0,02 до 0,05 МПа. Редукторы, применяемые при газовой сварке, обычно имеют два манометра, один показывает давление газа в баллоне, а другой — давление газа на выходе из редуктора, т.е. рабочее давление газа.
Посты газовой сварки бывают стационарными и передвижными. Питание стационарных постов осуществляется обычно от ацетиленового генератора и баллонов с кислородом, а передвижных — от баллонов с кислородом и ацетиленом.
Схема оборудования для передвижного газосварочного поста показана на рис. 75, а. Ацетилен и кислород по специальным шлангам 1 и 3 от баллонов, снабженных регуляторами давления газа (редукторами и манометрами) 2, подводятся к газовой горелке .
Рис. 75. Оборудование для передвижного газосварочного поста (а) и схема инжекторной горелки (б): 1,3 — шланги подачи соответственно ацетилена и кислорода; 2 — регуляторы давления газа; 4 — сварочная горелка; 5 — вентили; 6 — инжектор; 7 — смесительная камера; 8 — наконечник горелки; 9 — мундштук
Дозировка и смешивание кислорода и ацетилена происходит в сварочной горелке. Наибольшее распространение в промышленности получили инжекторные горелки, работающие на принципе засасывания ацетилена (рис. 75, б).