Смекни!
smekni.com

Материаловедение 5 (стр. 13 из 16)

Кислород под давлением 0,3...0,4 МПа поступает в горелку и через регулируемый вентиль 5 попадает к инжектору 6. Выхо­дя с большой скоростью из сопла инжектора, кислород создает значительное разрежение в смеситеной камере 7 за инжектором и засасывает ацетилен в каналы горелки. Образовавшаяся в сме­сительной камере горючая смесь по трубке наконечника 8 по­ступает к выходному отверстию мундштука 9.

Основным технологическим параметром газовой сварки яв­ляется мощность сварочного пламени, которая подбирается по толщине свариваемых деталей, измеряется расходом газа и ре­гулируется сменными наконечниками газовой горелки, имею­щими различные диаметры выходных отверстий инжектора и мундштука, что дает возможность регулировать мощность сварочного пламени. Присадочный металл в виде прутков или проволоки вводят в пламя горелки.

Сгорание смеси происходит на выходе из мундштука. Ацети- ленокислородное сварочное пламя (рис. 76) состоит из трех зон: ядра пламени 1, сварочной (восстановительной) зоны 2 и факела (окислительной зоны) 3.

В зависимости от соотношения (по объему) ацетилена и ки­слорода в горючей смеси пламя может быть нормальным, окис­лительным и науглероживающим. Регулируют характер пламени визуально по его цвету. Газовое пламя считается нормальным, когда соотношение газов 02 : С2Н2 = 1 или несколько больше. Нормальным пламенем сваривают большинство сталей. При увеличении содержания кислорода в смеси пламя приобретает голубоватый оттенок и имеет четко очерченное ядро. Такое пламя является окислительным и его используют при сварке латуней. При недостатке 02 (избытке ацетилена) пламя становится коп­тящим, удлиняется и приобретает красноватый оттенок. Такое пламя называется науглероживающим, его используют для сварки чугуна.


t,° С 300020001000

, см

Рис. 76. Схема ацетиленокислородного сварочного пламени и график изменения температуры пламени: 1 — ядро пламени; 2 — сварочная (восстановительная) зона; 3 — факел (окислительная зона);d — расстояние от мундштука горелки до зоны

пламени

Газовой резкой называется процесс сгорания металла в струе кислорода. Резка может быть ручной и машинной. Для ручной резки применяют резак (рис. 77), имеющий сменные мундштуки.

Конструкция резака отличается от конструкции сварочной го­релки наличием дополнительного канала 2 для подачи режущего кислорода. Мундштук резака 1 имеет центральное отверстие для режущего кислорода.

Рис. 77. Схема газового резака: 1 — мундштук; 2 — канал для режущего кислорода; 3, 4, 5 — вентили

При кислородной резке металл в месте разреза нагревают га­зовым пламенем до температуры его воспламенения в кислоро­де, затем на нагретую поверхность направляют струю режущего кислорода. Воспламенившийся металл выделяет при горении большое количество теплоты, которое вместе с подогревающим пламенем разогревает следующие слои. Вследствие этого горе­ние распространяется на всю толщину металла. Образующиеся при сгорании металла оксиды сдуваются струей кислорода.

Газокислородной резке хорошо поддаются конструкционные стали с содержанием углерода до 0,7 %. Кислородная резка чу­гуна затруднена, так как чугун начинает плавиться раньше, чем успевает нагреться до температуры воспламенения в кисло­роде. По этой же причине не поддаются обычной резке медные и алюминиевые сплавы. Медные сплавы, кроме того, имеют вы­сокую теплопроводность.

Газокислородная резка позволяет резать листы металла тол­щиной до 300 мм простейшей аппаратурой, проводить резку на монтаже и в полевых условиях, широко используется почти во всех областях металлургической и металлообрабатывающей про­мышленности, применяется также при раскрое листовой стали, вырезке косынок, кругов, фланцев и других фасонных заготовок.

Не поддающиеся обычной газовой резке высоколегированные стали, чугуны, некоторые цветные металлы и сплавы разрезают, используя способ кислородно-флюсовой резки.


Раздел 6. Неметаллические материалы теплоэнергетического оборудования и трубопроводов.

Тема 6.1. Теплоизоляционные материалы.

Теплоизоляционные материалы характеризуются низкой тепло­проводностью, оценивающейся соответствующим коэффициентом, показывающим, какое количество тепловой энергии (Вт) пропус­кает 1 м2 материала толщиной в 1 м при перепаде температур в 1 °С в течение часа. Теплопроводность материалов в основном зависит от их пористости и влажности. Зависимость теплоизоляционных свойств материала от пористости обусловлена малой теплопровод­ностью воздуха, содержащегося в порах материала.

Теплоизоляционными материалами условно считаются те, по­ристость которых обеспечивает коэффициент теплопроводности меньше 0,21 Вт/(м • °С) и объемную массу не более 700 кг/м3.

Основные требования, предъявляемые к теплоизоляционным материалам: негигроскопичность, так как при увлажнении повыша­ется их теплопроводность; механическая прочность, которая дол­жна обеспечивать надежность материала при монтаже и эксплуата­ции; высокая биостойкость, исключающая гниение и порчу грызу­нами; химическая стойкость, обеспечивающая неразрушаемость под действием жидкостей и газов.

Теплоизоляционные материалы и изделия классифицируются: по виду исходного сырья, форме и строению материала; по назначе­нию и области применения.

По виду исходного сырья теплоизоляционные материала и из­делия разделяют на две группы — органические и неорганичес­кие.

К органическим теплоизоляционным материалам относятся дре­весноволокнистые, древесно-стружечные, торфяные и камышито­вые плиты, а также изделия из пластмасс.

К неорганическим теплоизоляционным материалам относятся ми­неральная вата и изделия из нее, стеклянная вата и изделия из нее, пеностекло, трепельные керамические изделия, асбестсодержащие изделия (асбестоцемештные, асбестодоломитовые, асбестомагнези- альные и т.д.), а также сыпучие теплоизоляционные материалы — керамзитовый гравий, вспученные вермикулит и перлит.

По форме теплоизоляционные материалы делят на штучные и сыпучие.

Штучные материалы (рис. 5.1) получают формованием и прида­нием им различных форм и размеров — плиты, маты, полуцилинд­ры, скорлупы, сегменты и др.

Рис. 5.1. Форглованные теплоизоляционные изделия: а Полуцилиндры; б — сегмент; в — сегмент, выпиленный из плиты; г — кирпич; д — плита

Сыпучие материалы получают в виде бесформенных масс волок­нистого строения или порошкообразных масс зернистого строения, а также в виде их смесей. Это керамзитовый гравий, вспученный вермикулит, необработанная (комковатая) или гранулированная минеральная вата, торфяная крошка, древесная шерсть.

Порошкообразные смеси, применяемые в виде мастик для тепло­изоляции трубопроводов и оборудования, также относят к сыпучим материалам. Например, для этих целей используют асбозурит, ас- бестотрепельный порошок.

Штучные (формованные) изделия подразделяют на жесткие и гиб­кие. К первым относят плиты, блоки, кирпич, скорлупы и др. (см. рис. 5Д)5 ко вторым — маты, войлоки, шнуры и т.п.

По типу применения материалы разделяют на две группы: для тепловой изоляции холодных поверхностей в зданиях (стен, пере­крытий) и для изоляции горячих поверхностей (теплопроводов, оборудования).

Деление теплоизоляционных материалов по виду применения можно считать условным, поскольку многие материалы, особенно неорганические, используют для теплоизоляции как строительных конструкций, так и промышленного оборудования. К таким мате­риалам относят минеральную и стеклянную вату, пеностекло, яче­истые бетоны и др. Для теплоизоляции промышленного оборудо­вания, работающего при более высоких температурах, чем строи­тельные конструкции, применяют, как правило, эффективные материалы с меньшим значением теплопроводности.

По структуре вещества (его строению) теплоизоляционные ма­териалы разделяют на несколько групп: ячеистые, волокнистые, зернистые, пластинчатые.

Строение материала влияет не только на его теплоизоляционные свойства, но и на другие показатели. На теплоизоляционные свой­ства материалов оказывает влияние их структура, особенно на ма­териалы волокнистого строения, так как теплопроводность поперек волокон значительно меньше, чем вдоль них (древесины, например, в 2 раза).

5.1.1. Органические теплоизоляционные материалы

Органические теплоизоляционные материалы изготовляются из растительного, животного или синтетического сырья.

К теплоизоляционным материалам на основе растительного сырья относятся торфяные плиты, изготовляемые из слаборазло- жившегося торфа с добавками, повышающими водо- и биостойкость и понижающими горючесть.

Температура применения ограничена + 100 °С. Основное назна­чение торфоплит — тепловая изоляция строительных конструкций, холодильного оборудования и трубопроводов с температурой до -60 °С.

Торфоплиты изготовляются мокрым и сухим способом и фор­муются размером 1000 х 500 х 30 мм, толщиной 60 и 90 мм.

Выпускают торфоплиты обыкновенные и с повышенной водо- и биостойкостью (табл. 5.1).

Таблица 5.1 Технические характеристики торфяных теплоизоляционных плит

Материал хранится и транспортируется в жесткой таре в усло­виях, исключающих его увлажнение, повреждение и возможность возгорания.