Смекни!
smekni.com

Материаловедение 5 (стр. 6 из 16)

- линейные дифекты(дислокация – это смещение одной части кристалла по отношению к другой).

Объемные дефекты – это трехмерное нарушение структуры макроразмеров (поры, раковины, трещины),

Поверхностные дефекты, образуются на границах зерен металла. В процессе кристаллизации, как правило это различные не металлические примеси аксидные клепки и др.

Кристаллизация металлов и сплавов: образование кристаллической решетки происходит в процессе охлаждения металла и переходе его из жидкого состояния в твердое.

Это явление происходит при температуре кристаллизации или критической точки.

Температура кристаллизации зависит от частоты металла, скорости охлаждения, давления и др. факторов.

Процесс кристаллизации металла, состоит из двух:

· Зарождение центров кристаллизацией (зародышей)

· Рост кристалла от центра кристаллизации с образованием зерен.

От размера зерна в значительной степени зависит свойство металла, чем меньше зерно, тем лучше металл.

С целью получения мелкого зерна при кристаллизации до 3% от массы жидкого металла вводят тугоплавкие (измельченные) вещества, которые создают большое число дополнительных центров кристаллизации.

Такие металлы называются модифицированными, а тугоплавкие вещества – модификаторами.

При формировании слитка процесс кристаллизации начинается у стенок формы и движется в направлении обратном отводу тепла.

Слиток не имеет однородной структуры у поверхности мелкие кристаллы, а затем древовидные кристаллы.

В середине где тепло отводится образуется зона неориентированных кристаллов.

При затвердевании слитка имеет место сокращение его объема.

Для изучения состава структуры и свойства металлов применяются следующие методы:

*Химический и спектральный анализ. Позволяет определить химический состав.

*макроскопический анализ – исследование металла невооруженным глазом или с помощью лупы. Данным способом можно определить способ производства, вид термообработки, размер зерна, причину излома, наличие пор, раковин, трещин.

*микроскапический анализ – проводят с помощью микроскопа с увеличением от 50 до 2000 раз. Для исследования готовят специальные образцы, поверхность которых шлифуют, полируют и протравливают с целью увидеть границы между зернами.

*рентгеновский анализ – этот метод позволяет контролировать качество сворных швов.

*магнитный анализ – основан на изменении магнитных свойств металла, связанных со структурой кристаллической решетки.

*ультрозвуковой анализ – проникновение в материал.

*термический анализ – заключается в определении тепловых эффектов, при изменениях структуры.

* Дилатометрический анализ – основан на изменении объема образца в результате фазовых превращений.

* метод электросопротивления – в зависимости от материала увеличивается или уменьшается сопротивление.

Тема 2.2. Основные механические свойства металлов.

Основными характеристиками механических свойств металлов являются: прочность, пластичность, твердость, ударная вязкость.

Прочность металла или сплава — это его способность сопротивляться разрушению под действием внешних сил (нагрузок). В зависимости от характера действия этих сил различают прочность на растяжение, сжатие, изгиб и кручение, а также усталость металлов.

Для испытания на растяжение из металла или спла­ва изготовляют образцы, форма и размеры которых ус­тановлены ГОСТом,

Испытание производится на разрывных машинах. В верхний и нижний захваты закрепляют голов­ки, образца. Верхний захват закреплен неподвижно, а нижний — с помощью специального механизма медлен­но опускается, растягивая образец до его разрыва. Раз­виваемое машиной усилие достигает 50 т.При испытании на растяжение показатели прочнос­ти могут быть получены из диаграммы растяжения, ко­торая автоматически вычерчивается на барабане разрыв­ной машины. Эта диаграмма характеризует поведение материала при разных нагрузках. По горизонтальной линии диаграммы откладывается абсолютное удлинение образца в миллиметрах, а по вертикальной линии — нагрузка в килограммах. Наибольшая нагрузка Рв, когда образец металла на­чинает сужаться (образуется шейка), называется нагруз­кой предела прочности при растяжении, а напряжение, соответствующее наибольшей нагрузке, называется пре­делом прочности при растяжении —и определяется как отношение наибольшей нагрузкик первоначаль­ной площади поперечного сечения образца.

Пластичность — это способность металла, не разру­шаясь, изменять форму под действием нагрузки и сохра­нять измененную форму после снятия нагрузки.

Пластичность металлов определяется также при ис­пытании на растяжение. По величине удлинения образ­ца и величине уменьшения его поперечного сечения судят о пластичности материала. Чем больше удлиняет­ся образец, тем более пластичен металл. Пластичные металлы и сплавы хорошо подвергаются обработке дав­лением.

Характеристикой пластичности металлов является относительное удлинение и относительное сужение.

Относительным удлинением называется отношение величины приращения длины образца после разрыва к его первоначальной длине, выраженное в процентах:

Относительное сужение — отношение уменьшения площади поперечного сечения образца после испытания к первоначальной площади его поперечного сечения, выраженное в процентах.

Ударная вязкость — это способность металлов и спла­вов оказывать сопротивление действию ударных нагру­зок.

Для испытания материала на ударную вязкость из­готовляют стандартные образцы с надрезом в виде брус­ков с квадратным сечением и определенных размеров. Испытания проводят на специальном устройстве — ма­ятниковый копер. Маятник с закрепленным грузом, массой 10, 15 и 30 кг поднимают на определенную вы­соту и закрепляют в этом положении защелкой. После освобождения маятник падает и производит удар по образцу со стороны, противоположной надрезу.

Разрушение образцов имеет различный характер. У хрупких металлов образцы разрушаются без изменения формы, у вязких металлов они подвергаются значитель­ному изгибу в месте излома.

Ударная вязкость является важной характеристикой материала деталей, которые в процессе работы того или иного механизма испытывают кратковременную удар­ную нагрузку (например, коленчатые валы двигателей, валы и шестерни коробок передач, полуоси колес и др.). Вязкость — свойство, противоположное хрупкости.

Твердость — это свойство металла оказывать сопро­тивление проникновению в него другого, более твердо­го тела, не получающего остаточных деформаций.

Твердость тесно связана с такими важными характе­ристиками металлов и сплавов, как прочность, износо­устойчивость.

Есть несколько методов определения твердости (рис. 10), наиболее широкое распространение получи­ли следующие: -вдавливание шарика из твердой стали (метод Бри­нелля);

— вдавливание вершины алмазного конуса или стального шарика (метод Роквелла);

— вдавливание вершины алмазной пирамиды (метод Виккерса).

Метод Бринелля заключается в том, что шарик из за­каленной стали под действием нагрузки вдавливается в зачищенную поверхность металла.

Испытание на твердость металла по методу Бринелля проводят на приборе ТБ . Стальной шарик закрепляется в шпинделе прибора. Испытуемый обра­зец ставят на предметный столик, который подводят к шпинделю вращением маховика. При включении элек­тродвигателя наложенный груз опускается и стальной шарик с помощью рычажной системы вдавливается в образец. Сначала вдавливание производится медленно, затем нагрузка постепенно увеличивается и выдержива­ется определенное время для получения четких границ отпечатка. Испытуемый образец снимают со столика и измеряют диаметр полученного отпечатка (лунки) при помощи специальной лупы со встроенной шкалой (цена деления 0,1 мм).

Твердость по Бринеллю обозначается буквами НВ и определяется как отношение нагрузки Р (кг), приходя­щейся на 1 мм2 сферической поверхности отпечатка F, по формуле:

НВ = — , кг/мм2.

F

Метод Роквелла отличается от метода Бринелля тем, что измеряется не диаметр отпечатка (лунки), а его глу­бина. Чем больше глубина вдавливания, тем меньше твердость испытуемого образца (рис. 12).

Алмазный конус (или стальной шарик) вдавливает­ся в испытуемый образец под действием двух последо­вательно прилагаемых нагрузок — предварительной на­грузки, равной 10 кг, а затем полной (предварительная плюс основная) нагрузки 60 кг (шкала А) или 150 кг (шкала С).

На приборе TP величину вдавливания определяют непосредственно по шкалам А, В и С циферблата инди­катора (без измерения отпечатка и математических рас­четов).

При измерении твердости стандартной нагрузкой 150 кг значение твердости HR отсчитывается по шкале С индикатора, к обозначению твердости добавляется индекс шкалы, т. е. HRC.

При измерении твердости тонких образцов или по­верхностного слоя металла со стандартной нагрузкой 60 кг отсчет ведется по шкале А; к обозначению твердо­сти добавляется индекс данной шкалы, т. е. НР.А.

При измерении твердости мягких металлов стальным шариком со стандартной нагрузкой 100 кг отсчет ведется по шкале В и к обозначению твердости добавляется ин­декс данной шкалы, т. е. HRB.

Метод Виккерса применяется для испытания металлов и сплавов высокой твердости, деталей малых сечений и твердых поверхностных слоев, полученных химико-тер­мической обработкой (цементированных, азотированных и др.).

Этот метод дает очень точные показатели и приме­ним к металлам любой твердости. Преимуществом ме­тода Веккерса является возможность испытания тонкого поверхностного слоя металла после различных видов обработки.

Твердость металла определяется отношением нагруз­ки Р в кг, создаваемой прибором, к площади отпечатка F в мм2, вычисленной по его диагонали, и обозначается HV.