Смекни!
smekni.com

Модернизация основного оборудования блока регенерации растворителя на установке депарафинизации (стр. 9 из 15)

Условие выполняется.

3.3.2. Расчет теплообменника

3.3.2.1 Целью расчета является определение толщины стенок кожуха, толщины трубной решетки, расчет опор

3.3.2.2 Исходные данные

Наружный диаметр кожуха D=325мм

Диаметр трубок d=20x2мм

Шаг отверстий в решетке

= 0,026м

Давление трубы (избыточное) :

в межтрубном пространстве

= 0,02МПа

в трубном пространстве

= 0,1МПа.

Расчетная температура :

в межтрубном пространстве

˚С

в трубном пространстве

˚С

Материал деталей сталь ВСт 3 сп

Расчетная схема приведена на рисунке 3.7.

3.3.2.3 Расчет обечайки кожуха

Толщину стенки кожуха определяем по формуле:

, (3.105.)

где

=151,2 МПа - допускаемые напряжения при t = 65˚С для стали ВСт 3 сп

=

Для условий гидроиспытаний в качестве расчетного принимают пробное давление из условия

(3.106.)

= 154 МПа – допускаемое напряжение для стали ВСт 3 сп при t = 20˚С.

Тогда:

Исполнительную толщину стенки кожуха принимаем Sк = 8мм.

Допускаемое внутреннее избыточное давление определяется по формуле:

, (3.107.)

где с – прибавка для компенсации коррозии и эрозии.

Для материалов, стойких к данной среде, при отсутствии данных о проницаемости рекомендуется принимать с = 2мм.

.

Рисунок 3.7. Расчетная схема аппарата

Допустимое внутреннее избыточное давление существенно превышает рабочее давление и давление гидроиспытаний.

3.3.2.4 Расчет трубной решетки

Толщину трубной решетки, исходя из условий закрепления труб развальцовкой с обваркой, определяем по формуле [8]:

(3.108.)

= 0,02м - наружный диаметр трубок

= 0,026м - шаг отверстий в решетке

=
> 0,01м

Толщина трубной решетки, исходя из условий прочности решетки:

(3.109.)

φ0коэффициент ослабления решетки отверстиями.

= 0,415м – средний диаметр прокладки.

φ0 =

, (3.110.)

где

= 20,8мм – диаметр отверстий в решетке

φ0 =

= 0,238∙0,415∙

Исполнительную толщину трубной решетки с учетом прибавки на коррозию из конструктивных соображений принимаем Sp = 20мм.

3.3.2.5 Расчет седловых опор аппарата

Вес аппарата с учетом теплоизоляции принимаем

. Усилия на опоры будут максимальными при гидроиспытаниях аппарата.

Вес жидкости определим по формуле :

тогда общая нагрузка на опоры:

По [6] выбираем: опора 20-167-1, число опор 2 шт, L=2600мм, D=325мм, Н=85мм,

а = 500мм, е = 1000мм, в =180мм

Нагрузка балки определяется по формулам:

;(3.111.)
(3.112.)

=
= 2,983

Опорное усилие:

(3.113.)

Момент над опорами :

(3.114.)

Максимальный момент между опорами:

(3.115.)

-

Рисунок 3.8. К расчету седловых опор

Поперечное усилие в сечении над опорами :

(3.116.)

Проверим несущую способность обечайки в сечении между опорами :

Условие прочности :

, (3.117.)

Где К9 = 1,1 – коэффициент, учитывающий частичное заполнение жидкостью

<151 МПа

Условие выполняется.

Проверим несущую способность обечайки в области опорного узла. Для этого определим параметры:

=2,83
(3.118.)

=
(3.105)

Общее осевое мембранное напряжение изгиба, действующее в области опорного узла

(3.119.)

Условие прочности:

,(3.120.)

где

- допускаемые опорные усилия от нагружения в осевом и окружном направлениях.

, (3.121.)

где К10 = 0,25 - коэффициент, учитывающий влияние ширины пояса опоры.

К12 = 0,84 - коэффициент, учитывающий влияние угла охвата.

- предельные напряжения изгиба, МПа

, (3.122)

Где

и
- коэффициенты:
=1,2 ;
=1

=1,2
, тогда

, где

К14 =0,46 - коэффициент, учитывающий влияние угла охвата.

К16 = 0,96 - коэффициент, учитывающий влияние расстояния до днища

К17 = 0,29 - коэффициент, учитывающий влияние ширины пояса опоры.

- предельные напряжения изгиба, МН

=
, где
= 0,52 ;
= 1(3.123.)

= 0,52