В настоящее время проводятся работы по создания критериев оценки качества при автоматизированном 100-%-ном неразрушающем контроле качества поверхности калиброванной стали. [8]
Следует также упомянуть высокие технико-экономические показатели, получаемые предприятиями при внедрении вакуумшлакового рафинирования металла. В стали, обработанной на промышленной УВСШ (установка рафинирования в столбе шлака), содержание кислорода ниже, чем в металле, обработанном синтетическим шлаком, в 2 раза (до 0,002% и менее), серы – в 2 раза (до 0,003% и менее), водорода в 1-1,5 раза (до 2,5-3,0см3/100г). Количество неметаллических включений после обработки шлаком рационального состава на УВСШ снижается в 3-5 раз по сравнению с металлом, обработанным по другим технологиям.
Эффективность использования способа вакуумирования стали с обработкой в столбе шлака определяется соотношением дополнительных затрат в металлургии, связанных с внедрением способа. И экономического эффекта от замены у потребителей металла обычной выплавки металлом, выплавленным с вакуумшлаковой обработкой.
Непосредственно на металлургическом заводе экономический эффект может быть получен за счёт увеличения производительности печей, доплат за качество металла, а также за счёт сокращения или устранения противофлокенной обработки проката. Народно-хозяйственный эффект же выразится главным образом в увеличении долговечности подшипников.
Сравнивая данные о стоимости внепечной обработки стали при использовании различных способов рафинирования (рисунок 2), можно сделать вывод о том. Что при достижении проектной производительности УВСШ удорожание металла не будет значительно превышать стоимость обработки на установках RH и DH и будет значительно ниже, чем при использовании способа ASEA-SKF (слив металла в ковш, вакуумная дегазация, электромагнитное перемешивание, дополнительный подогрев металла дугой и слив). В то же время способ ВСШ, как ни один из известных способов внепечной обработки, позволяет за короткое время комплексно решать проблему рафинирования стали, осуществляя её десульфурацию, раскисление, дегазацию и очищение от неметаллических включений. При соответствующем конструктивном оформлении установка ВСШ не сложнее в работе, чем установки типа RH и DH, а тепловые потери металла могут быть такими же, как на установках указанного типа.
Использование способа ВСШ для обработки конструкционных сталей других марок также может быть весьма эффективно, так как именно на этих сталях важно провести весь комплекс рафинирования металла от серы, газов и неметаллических включений, позволяющий значительно повысить механические и служебные свойства сталей, уменьшить металлоёмкость деталей машин и конструкций. Реализация процесса обработки стали в вакууме в столбе шлака позволит достигнуть качественно нового уровня свойств металла.
Рисунок 2 – Изменение затрат на вакуумную обработку в зависимости от количества обрабатываемого металла и применяемых способов обработки: 1-6 – способы вакуумирования: 1 – при обычной разливке, 2 – в ковше, 3- RH и DH, 4 – Финкл, 5 – ASEA-SKF, 6 – ВСШ
Следует отметить, что возможности способа вакуумшлакового рафинирования не ограничиваются только стандартным вариантом обработки. Большие преимущества могут быть получены также при совмещении данного способа рафинирования с горизонтальными и радиальными МНЛЗ, с модифицированием металла редкоземельными и щелочноземельными металлами, при работе установки ВСШ в комплексе со сталеплавильными агрегатами (конвертор, САНД), обладающими повышенной производительностью. Снабжение установки приспособлением для подогрева металла в процессе или после обработки позволит вывести вакуумшлаковое рафинирование по эффективности на один уровень с дорогостоящим способом ASEA-SKF при значительно меньших затратах. [10]
Многие исследования, проводимые в настоящее время, направлены уже даже не на совершенствование существующих технологий, а на разработку совершенно новых. Так в Японии находит ограниченное применение труднообрабатываемая жаропрочная быстрорежущая сталь SKH4A (18%W, 4%Cr, 1%Vn, 10%Co). [1] В США в последние годы создан новый жаропрочный материал для подшипников из нитрида кремния, долговечность которого на 300-800% выше долговечности обычных подшипниковых материалов, работающих в условиях высоких температур и в коррозионных средах. Исследования, выполненные в Америке, показали, что нитрид кремния, спрессованный в горячем состоянии, обеспечивает долговечность 5,7 вместо 1,8 млн. циклов в случае быстрорежущей инструментальной стали вакуумного переплава. Подшипник из нитрида кремния успешно работал при 9000С и скорости вращения вала 30 000 об/мин. [7]
В конечном итоге, в настоящее время очень важным для подшипниковой промышленности является максимальное объединение усилий учёных и технологов различных отраслей: химиков, физиков, металлургов, конструкторов, и в первую очередь экономистов, как нашего государства, так и других стран для обеспечения неуклонного роста производства и дальнейшего развития технологии производства недорогих, и самое главное высококачественных и долговечных подшипников, как металлических, так и на основе композиционных материалов, и, в будущем, создания практически вечных подшипников, срок службы которых будет измеряться не десятками лет, а столетиями.
4. Выбор и рекомендации по использованию новых прогрессивных разработок в технологии выплавки шарикоподшипниковых сталей.
Постоянно растущие требования к качеству стали могут сыть удовлетворены лишь при производстве металла с низкими содержаниями серы, кислорода, водорода и неметаллических включений. Но это связано со значительными трудностями: лишь способ обработки, получивший название ASEA-SKF (по названию двух разработавших его шведских фирм), позволяет комплексно рафинировать сталь, но это весьма дорогой и трудоемкий процесс.
УкрНИИспецсталью совместно с заводом «Днепроспецсталь» и другими организациями разработаны способ и устройства для вакуумирования стали с одновременной обработкой в столбе синтетического шлака (УВСШ). Способ позволяет вакуумировать сталь в широком диапазоне, сочетая преимущества процессов вакуумирования и обработки металла синтетическим шлаком при сравнительно невысоких затратах.
Сущность способа состоит в следующем: металл, выплавленный в сталеплавильном агрегате, подвергается вакуумированию в струе, а затем рафинируется в шлаке, проходя через столб шлакового расплава высотой свыше 3м. Столб шлака формируется за счёт разности атмосферного и остаточного давления в вакуумной камере. Количество шлака определяется барометрической высотой и поперечным сечением шлакового столба. Схема выплавки металла с вакуумшлаковой обработкой приведена на рисунке 3.
Следуя схеме, металл из сталеплавильного агрегата поступает в передаточный ковш, который устанавливается на вакуум-камеру, после чего начинается донный выпуск с дегазацией металла в струе. Распылённый металл стекает на дно вакуум-камеры и попадает в шлаковый рукав, заполненный шлаком, и, спускаясь сквозь слой шлака вниз, рафинируется. В вакуумную камеру шлак поступает из приёмного ковша шлакоплавильной печи. Под шлаковым рукавом располагается приёмный ковш, из которого металл поступает непосредственно на разливку, которая производится либо в изложницы, либо, что предпочтительнее, в машину непрерывного литья заготовок.
Рисунок 3 – Схема способа вакуумирования с обработкой в столбе шлака: 1- сталеплавильная печь, 2 - передаточный ковш с исходным металлом, 3 - вакуумная камера, 4 – шлаковый рукав, 5 – столб жидкого шлака, 6 – приёмный ковш с синтетическим шлаком, 7- шлакоплавильная печь, 8- изложницы, 9- МНЛЗ.
Как было установлено проведенными исследованиями, способ вакуумирования с одновременной обработкой в столбе шлака имеет ряд кинетических преимуществ перед другими способами обработки. Так, при вакуумировании наряду с дегазацией в струе наблюдается плёночное, капельное, или в виде мелких струй течение металла по стенкам и коническому днищу вакуумной камеры, что повышает эффективность дегазации. При движении металла через столб шлака происходит образование шлакометаллической эмульсии, в которой дисперсная фаза – металл – имеет размеры частиц в пределах 0,05-1,0 см, а максимальная масса капель имеет фракции размером 0,3-0,6 см.
Поверхность контакта металла со шлаком в процессе обработки в столбе шлака составляет более 300 м2/т стали, что на много превышает аналогичный показатель для обработки синтетическим шлаком в ковше.
Обработку в столбе шлака можно охарактеризовать как взаимодействие фаз при противотоке в случае, когда скорость движения одной из фаз (в данном случае шлака) близка к нулю. Поэтому эффективность удаления растворимых примесей из металла при обработке в столбе шлака выше, чем при традиционном перемешивании фаз в объёме (например, при обработке синтетическим шлаком в ковше). Повышению эффективности рафинирования способствует также тот факт, что металл после обработки не контактирует с загрязнённым шлаком, чем затрудняется обратный переход примесей из шлака в металл.
На установке завода «Днепроспецсталь» обрабатывали подшипниковую сталь. Её выплавляли в 60-т печах переплавом отходов с продувкой кислородом, шлак в период доводки не раскисляли и перед выпуском металла из печи не удаляли. Все проведенные эксперименты и анализы плавок дали положительные результаты. [10]