14. Средний дебит одной скважины по нефти:
(5.8)15. Средний дебит скважин по нефти перешедших с предыдущего года:
(5.9)16. Накопленная добыча нефти:
(5.10)17. Текущий коэффициент нефтеизвлечения (КИН)
обратно пропорционален начальным балансовым запасам (НБЗ): (5.11)18. Отбор от утвержденных начальных извлекаемых запасов НИЗ, %:
(5.12)19. Темп отбора от начальных извлекаемых запасов (НИЗ), %:
(5.13)20. Темп отбора от текущих извлекаемых запасов, %:
(5.14)21. Средняя обводненность добываемой продукции:
(5.15),22. Годовая добыча жидкости:
(5.16)23. Добыча жидкости с начала разработки:
(5.17)24. Годовая закачка воды:
(5.18)25. Годовая компенсация отбора жидкости закачкой:
26. Накопленная компенсация отбора жидкости закачкой:
27. Водо-нефтяной фактор:
Динамика основных показателей разработки показана в табл. 5.2
Таблица 5.2 Динамика основных показателей разработки
Годы | Добыча, млн. т | Накопленная добыча, млн. т | В, % | Закачка воды, млн. м3 | Средний дебит по нефти, т/сут | КИН | Темп отбора от НИЗ | Темп отбора от ТИЗ | |||
нефти | жидкости | нефти | жидкости | год | S | ||||||
2010 | 0,462 | 10,286 | 55,292 | 311,764 | 0,96 | 13,840 | 250,417 | 4,22 | 39,97 | 1,23 | 1,46 |
2011 | 0,472 | 10,936 | 55,764 | 323,206 | 0,96 | 13,843 | 264,261 | 4,27 | 40,32 | 1,18 | 1,41 |
2012 | 0,463 | 11,153 | 56,228 | 334,647 | 0,96 | 13,841 | 278,102 | 4,15 | 40,65 | 1,11 | 1,36 |
2013 | 0,481 | 12,047 | 56,709 | 346,089 | 0,96 | 13,845 | 291,947 | 4,26 | 41 | 1,06 | 1,30 |
2014 | 0,465 | 12,148 | 57,174 | 357,530 | 0,96 | 13,841 | 305,789 | 4,09 | 41,33 | 1,00 | 1,25 |
2015 | 0,494 | 13,498 | 57,668 | 368,972 | 0,96 | 13,848 | 319,637 | 4,3 | 41,69 | 0,94 | 1,20 |
2016 | 0,508 | 14,572 | 58,176 | 380,413 | 0,97 | 13,851 | 333,489 | 4,38 | 42,06 | 0,90 | 1,15 |
2017 | 0,514 | 15,497 | 58,690 | 391,855 | 0,97 | 13,853 | 347,342 | 4,39 | 42,43 | 0,84 | 1,09 |
2018 | 0,506 | 16,087 | 59,196 | 403,297 | 0,97 | 13,851 | 361,193 | 4,29 | 42,8 | 0,79 | 1,04 |
2019 | 0,509 | 17,056 | 59,705 | 414,738 | 0,97 | 13,851 | 375,045 | 4,27 | 43,16 | 0,73 | 0,97 |
2020 | 0,505 | 17,927 | 60,210 | 426,180 | 0,97 | 13,851 | 388,897 | 4,2 | 43,53 | 0,68 | 0,91 |
2021 | 0,513 | 19,329 | 60,723 | 437,621 | 0,97 | 13,853 | 402,750 | 4,23 | 43,9 | 0,63 | 0,85 |
2022 | 0,513 | 20,578 | 61,236 | 449,063 | 0,98 | 13,853 | 416,603 | 4,2 | 44,27 | 0,58 | 0,79 |
2023 | 0,497 | 21,243 | 61,733 | 460,504 | 0,98 | 13,849 | 430,452 | 4,03 | 44,63 | 0,54 | 0,74 |
2024 | 0,507 | 23,222 | 62,240 | 471,946 | 0,98 | 13,851 | 444,303 | 4,07 | 45 | 0,50 | 0,69 |
Динамика годовой добычи нефти, жидкости, годовой закачки воды приведена на рис. 5.1.
Рис. 5.1. Динамика годовой добычи нефти, жидкости, годовой закачки воды
Динамика накопленной добычи нефти, жидкости и накопленной закачки воды приведена на рис. 5.2.
Рис. 5.2. Динамика накопленной добычи нефти, жидкости и накопленной закачки воды
Динамика КИН, темпа отбора от НИЗ и темпа отбора от ТИЗ приведены на рис. 5.3.
Рис. 5.3.Динамика КИН, темпа отбора от НИЗ и темпа отбора от ТИЗ
6. ВЫВОДЫ И РЕКОМЕНДАЦИИ
Приведенные анализы эффективности микробиологического воздействия показали очень низкую эффективность данного метода.
В качестве применения технологии увеличения нефтеотмывающей способности вытесняющего агента в скважинах, разрабатываемых низкопроницаемые коллектора при первичном заводнении рассматривается закачка водорастворимых поверхностно-активных веществ (ПАВ АФ9-12).
Разработку заводнённых пластов более эффективно вести с применением маслорастворимых ПАВ (АФ9-6).
При закачке закачка водных дисперсий маслорастворимых НПАВ в пласте на фронте вытеснения формируется микроэмульсионная оторочка с низким содержанием нефти, хорошей нефтевытесняющей способностью и вязкостью, близкой к вязкости нефти, что увеличивает коэффициент вытеснения и охват пласта заводнением.
В качестве наиболее характерного примера применения технологий ограничения подвижности закачиваемого агента в зонах высокой водонасыщенности рассматривается технология с использованием композиционных систем на основе капсулированных полимерных систем (КПС) и закачка дисперсно-коллоидного материала (ДКМ).
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Желтов Ю.П. Разработка нефтяных месторождений. - М.: Недра, 1998.
2. Ибатуллин Р.Р. Теоретические основы процессов разработки нефтяных месторождений: Курс лекций. Часть 1. Системы и режимы разработки: Учебно-методическое пособие. - Альметьевск: АГНИ, 2007.
3. Ибатуллин Р.Р. Теоретические основы процессов разработки нефтяных месторождений: Курс лекций. Часть 2. Процессы воздействия на пласты (Технологии и методы расчета): Учебно-методическое пособие. – Альметьевск: АГНИ, 2008.
4. Ибатуллин Р.Р., Гарипова Л.И. Сборник задач по теоретическим основам разработки нефтяных месторождений. - Альметьевск: АГНИ, 2008.
5. Муслимов Р.Х. Современные методы повышения нефтеизвлечения: проектирование, оптимизация и оценка эффективности: Учебное пособие. – Казань: изд-во "Фэн" Академии наук РТ, 2005.
6. Увеличение нефтеотдачи на поздней стадии разработки месторождений (методы, теория, практика) /Р.Р. Ибатуллин, Н.Г. Ибрагимов, Ш.Ф. Тахаутдинов, Р.С. Хисамов. – М.: Недра – Бизнесцентр, 2004.
7. Расторгуева Л.Г., Захарова Е.Ф. Методическое пособие по разработке дипломного проекта в соответствии с требованиями стандартов к оформлению текстовой и графической части.. Альметьевск 2007.
8. Липаев А.А., Мусин М.М., Янгуразова З.А., Тухватуллина Г.З. Методика расчета технологических показателей разработки нефтяных меторождений: Учебное пособие. – Альметьевск, 2009 – 108 с.