Смекни!
smekni.com

Фазові і структурні перетворення під час термічної обробки сталей 5ХНМ та ШХ15 (стр. 10 из 12)

Аустенітизація – процес отримання структури аустеніту під час нагріву в аустенітну область.

Серед режимів термічної обробки сталі ШХ15, що розглядаються в даній роботі, процес аустенітизації відбувається при нормалізації та сфероїдизуючому відпалі та під час нагріву виробу під гартування. У цих режимах температура нагріву перевищує точку Ас

. При проведенні всіх інших видів термообробки аустенітизація не відбувається.

Температура аустенитизації для сталі ШХ15 – 780 - 820 °С. Нижня межа прийнята на 15 - 20 °С вище за температури закінчення

перетворення, верхній - декілька нижче за температуру відносної гомогенізації аустеніту. Недогрівання призводить до появлення в мікроструктурі дрібних ділянок пластинчастого перлита, вкраплених в масу дрібнозернистого перлиту. Твердість при цьому підвищена. Перегрів приводить до утворення крупнолластинчатого перлиту на фоні крупних глобулей неоднорідного зернистого перлиту, що не надає впливу на твердість стали, і в цьому випадку твердість не може служити надійним показником якості відпалу.

При аустенитизації сталі для завершення перетворення перлиту в аустеніт цілком достатня витримка протягом 45 - 60 хв. Проте, враховуючи неминучі перепади температури в різних зонах садіння, тривалість нагріву повинна бути достатньою, щоб найбільш холодна частина садіння знаходилася при температурі аустенитизації не менше 1 ч.

Швидкість охолодження повинна бути такою, щоб перетворення аустеніту на зернистий перлитдля сталі ШХ15 завершилося при температурі 600 °С.

Відпал проводять вище т. Ас

(745 ºС). Початкова структура – пластинчатий перліт з тонкою цементитною сіткою.

Під час нагріву сталі до температури Ас

поліморфні перетворення не відбуваються; відбувається розчин карбідів і дифузія вуглецю. Крім того, відбувається розподіл карбідної складової шляхом переносу вуглецю від пластини, що розчиняється, енергетично менш стійкої, до сфероїду чи іншого стійкого центру кристалізації.

Перетворення перліту в аустеніт відбувається при температурах більших за Ас

: Ф
+ Ц
→ А
(метастаб.) → А
(стаб.).

Зародиш аустеніту утворюється переважно по границях перлітних пластин. Цей процес протікає в дві стадії:

- на першій стадії за зсувним механізмом утворюється метастабільний зародиш аустеніту з вмістом вуглецю приблизно в два рази менш, ніж в евтектоїд ній сталі (0,4% С): Ф

+ Ц
→ А
. Такий механізм підтверджується тим, що зародиш має плоску форму. На полірованій поверхні шліфа з’являється рельєф, характерний для зсувних перетворень.

- на другій стадії відбувається трансформація метастабільного аустеніту в стабільний: А

(метастаб.) → А
(стаб.).

Для сталі ШХ15 температура кінця евтектоїдного перетворення зсувається до більш високих температур і досягає 750-760 ºС. Під час нагріву до 760 ºС перліт перетворюється в аустеніт. При цьому в аустеніт переходить лише та кількість карбідів, яка відповідає евтектоїдному складу (0,8% С). Останні карбіди розчиняються по мірі росту температури відповідно лінії SE діаграми рівноваги системи Fe – C [7]

В зв’язку з цим, якщо перегріти сталь ШХ15 вище т. Ас

, її структура буде складатись з аустеніту та карбідів, які не розчиняються.

Легування сталі Cr зменшує розчинність вуглецю в аустеніті. При цьому, вся лінія граничної розчинності карбідів в аустеніті, а разом з нею і евтектоїдна точка S зміщуються вліво у бік меншої концентрації вуглецю. На рисунку 2.12 показано зміну евтектоїдної точки S та точки Е на діаграмі під впливом Cr [7].

Нагрів сталі ШХ15 під гартування також відбувається в між критичному інтервалі (Ас

– Ас
). Швидкість нагріву під гартування набагато більше, ніж при відпалі. При цьому до температури критичної т.Ас
не яких фазово-структурних перетворень не відбувається, бо при цій температурі вільна енергія перліту дорівнює вільній енергії аустеніту. Тому для перетворення перліту в аустеніт температура нагріву повинна бути вищою рівноважної температури Ас
= 745 ºС.

Процес перетворення П → А відбувається за наступним механізмом. Сталь у вихідному стані являє собою суміш фаз фериту та цементиту.

Під час нагріву декілька вище за критичну т. Ас

на границі феритної та цементитної фаз починається перетворення
, яке призводить до утворення низько вуглецевого аустеніту, в якому розчиняється цементит. Утворений аустеніт є хімічно неоднорідним. Концентрація вуглецю в аустеніті на границі з цементитом значно вище, ніж на границі з феритом (рисунок 2.11, сплав 1). Перетворення
протікає сильніше, ніж розчинення цементиту. При наявності надлишкового цементиту в структурі заевтектоїдної сталі неоднорідність, яка утворюється при нагріванні аустеніту, стає ще більшою. Це пояснюється тим, що надлишковий цементит перетворюється в аустеніт при більш високій температурі, ніж перетворення перлиту в аустеніт.

При закінченні процесу нагріву структура сталі ШХ15 в області Ас

– Ас
буде складатися з двох фаз: аустеніту та цементиту.

Розмір зерна аустеніту залежить від початкової структури, тобто від форми і дисперсності карбідів.

В вихідному стані перед гартуванням сталь ШХ15 має дрібнозернисту структуру. При низьких температурах зерно загартованої сталі має одноковий розмір, тобто структура є рівновісною. По мірі підвищення температури нагрівання відбувається послідовне зростання зерна, яке лишається рівновісним і однорідним за величиною.

Потім відбувається розчинення надмірної фази до отримання однорідного аустеніту.

Чим більше в сталі вуглецю, тим швидше протікають процеси аустенітизації, що пояснюється збільшенням кількості цементиту.

Введення в сталь ШХ15 хрома уповільнює процес аустенітизації внаслідок утворення легованого цементиту або карбідів хрома, які більш складно розчиняються в аустеніті.

Під час безперервного нагріву перетворення перліту в аустеніт протікає в деякому інтервалі температур. На рисунку 2.15 наведено термокінетичну діаграму утворення аустеніту при нагріві сталі з 1% С.

Чим вище швидкість нагріву, тим при більш високій температурі відбувається перетворення фирито-цементитної структури (перлиту) в аустенітну.

2.5 Фазові та структурні перетворення під час охолодження сталі ШХ15

Якщо сталь ШХ15 зі структурою аустеніта, яку отримано в результаті нагріву до температури Ас

, переохолодити нижче Аr
, то аустеніт виявляється в метастабільному стані і претерпеває перетворення.

Для опису кінетіки перетворення переохолодженого аустеніту використовують ізотермічну діаграму розпаду переохолодженого аустеніту.

Діаграми ізотермічного розпаду аустеніту тільки приблизно характеризують перетворення, які протікають під час безперервного охолодження. Час мінімальної стійкості мінімальної стійкості аустеніту під час безперервного охолодження в 1,5 раза більше, ніж при ізотермічному розпаді [7].

Розпад аустеніту відбувається тільки при температурі нижчої за критичну т. Ас

, коли вільна енергія аустеніту вища за вільну енергію продуктів його перетворення. Тобто для розпаду аустеніт має бути переохолодженим. Від міри переохолодження залежить швидкість перетворення і будова продуктів розпаду аустеніту.

Залежно від міри переохолодження розрізняють три температурні області перетворення: перлітну, область проміжного перетворення та мартенситну.