Уран применяется в качестве ядерного горючего, U238служит сырьем для получения ядерного горючего Pu239. U235и U233 являются делящимися материалами. Все другие области применения урана в настоящее время мало существенны.
Некоторые соединения урана
Галогениды. Уран образует большое число соединений с галогенами:
UF3 UF4 UF5 UF6
UCl3 UCl4 UCl5 UCl6
UBr3 UBr4 UBr5
UI3 UI4
Стабильность галогенидов падает с возрастанием порядкового номера галогена и числа атомов галогена в соединении. Кроме того, известны оксигалогениды UO2Г2 и UOГ2.
Трифторид изоморфен фторидам лантана и неодима. Он не растворяется в воде и разбавленных кислотах, медленно растворяется в концентрированных серной, азотной и хлорной кислотах, быстро – в смеси азотной и борной кислот, образуя UO22+. В соляной кислоте идет медленное растворение с образованием U3+.
Тетрафторид UF4 является исходнымсоединением для получения металлического урана. Хороший метод получения UF4из перекиси урана осуществляется по схеме:
Следовательно, пентафторид урана при нагревании диспропорционирует. Его можно получить также при действии фтористого водорода на пентахлорид урана или по реакции между тетрафторидом урана и фтором в необходимых пропорциях при 150–250 °С.
Гексафторид уранаUF6 – легколетучее соединение, которое применяют для разделения изотопов урана в газовой фазе. Он не имеет жидкого состояния при атмосферном давлении и возгоняется при 56,5 °С. Давление его пара при комнатной температуре равно 120 мм рт. ст. Гексафторид урана получается действием фтора при температурах выше 220 °С на низшие фториды урана или фторирующих реагентов (AgF2, FeF3, BrF3, ClF3) на уран и его двуокись.
Органические вещества под действием гексафторида урана обугливаются. Устойчивы к нему только полностью фторированные органические соединения.
ТригалогенидыUCl3, UBr3и UI3 образуются при действии свободных галогенов или галогенводородов на уран, но одновременно получаются и тетрагалогениды.
Тригалогениды урана растворяются в воде и реагируют с ней с выделением водорода. В неполярных растворителях они нерастворимы.
Тетрагалогениды UCl4, UBr4и UI4. Тетрахлорид и тетрабромид получают действием на двуокись урана при 500 °С соответственно четыреххлористого и четырехбромистого углерода или хлора в присутствии графита. Тетраиодид урана получается при действии паров иода на уран при давлении иода 100–200 мм рт. ст.
Все тетрагалогениды (кроме UF4) растворимы в воде, нерастворимы в неполярных растворителях.
Четыреххлористый углерод и сероуглерод растворяют пентахлорид урана. Спирты, эфиры, пиридин и ряд других органических соединений реагируют с пентахлоридом.
Все галогениды урана, кроме фторидов, гигроскопичны, подвергаются гидролизу. Наименее гигроскопичны соединения урана (III), более гигроскопичны тетрагалогениды и еще более подвержены гидролизу гексагалогениды.
Оксигалогениды. При действии свободных галогенов или галогенводородов на оксиды урана при определенных условиях нагревания образуются оксигалогениды урана. Они могут быть также получены окислением тетрагалогенидов кислородом при 150 °С. Оксииодид крайне неустойчив. Оксигалогениды UVIхорошо растворимы в воде. Оксигалогениды UIVобразуются при взаимодействии UO2и тетрагалогенидов урана при высокой температуре, а также при гидролизе тетрагалогенидов урана. Оксигалогениды представляют собой растворимые в воде соединения.
Положение равновесия зависит от температуры. Гидрид урана активен и служит исходным материалом для получения ряда соединений урана. Гидрид урана пирофорен. Растворами окислителей окисляется до иона UO22+. Гидрид урана растворим в соляной, азотной, горячей концентрированной серной, фосфорной и хлорной кислотах.
Карбид урана UC2в измельченном состоянии пирофорен.
Комплексные соединения урана образуются с угольной, винной, лимонной, яблочной, молочной и другими органическими кислотами. В зависимости от концентрации адденда меняется соотношение комплексов различного состава. С ацетилацетонатом и другими дикетонами образуются растворимые в органических растворителях комплексы. Состав комплексных ионов может быть изображен формулой [U(CO3)n(OH)m]4-2m-n. В присутствии кислорода осуществляется переход в комплексный ион UVI.
где n = 1, 2, 3, 4, 5 и x = 0, 1, 2,…
Соли уранила образуют комплексные соединения с тиомочевиной. С теноилтрифторацетоном образуется комплекс UO2(TTA)2 . 2H2O. Получены также и другие комплексы урана.
II. ОКСИДЫ УРАНА. ИХ ХАРАКТЕРИСТИКА
Значение оксидов урана в его технологии
В результате аффинажа самыми различными способами уран получают в виде одного из таких соединений, как уранилнитрат, диуранат аммония, пероксид урана, уранилтрикарбонат аммония.
Операции превращения этих соединений в конечные продукты показаны на схеме:
UO2(NO3)2. 6H2O Упарка (NH4)2U2O7 UO3 ПрокаливаниеВосстановление UO2 UO4. 2H2O U3O8(NH4)4[UO2(CO3)3]
U Металлотермия Обработка HF UF4 UF6 ФторированиеСледовательно, оксиды урана UO3, UO2 и U3O8 – важнейшие промежуточные продукты уранового производства при получении фторидов урана и металлического урана.
Кроме того, основой ТВЭЛов современных ядерных реакторов многих типов служит диоксид урана, который обладает высокой коррозионной и радиационной стойкостью. Применение огнеупорного UO2 дает возможность получать в реакторах значительно более высокие температуры, чем при использовании обычных металлических ТВЭЛов. Для изготовления таких ТВЭЛов используют, как правило, диоксид урана, обогащенный изотопом уран-235. Химические свойства такого диоксида аналогичны обычному. К диоксиду, обогащенному изотопом уран-235, предъявляются повышенные требования как по чистоте, так и по структуре и физическим свойствам [1].