Образец, отобранный из листа или ленты трансформаторной стали, после определения магнитных свойств нагревают до 120оС и после выдержки при этой температуре в течение 120 час. вновь определяют удельные магниты.
Коэффициент старения по удельным магнитным потерям определяют по формуле:
Кст=(Р2-Р1)*100/Р1, (1)
где Р1 и Р2 – удельные магнитные потери до и после старения, Вт/кг
Для трансформаторной электротехнической стали этот коэффициент не должен превышать 2–4% (для листа в зависимости от марки стали) и 6% для ленты.
Наряду с магнитными свойствами имеют значение и механические свойства листа трансформаторной стали. В производстве электрических машин и аппаратов, которое в настоящее время в большой степени автоматизировано, благоприятные механические свойства (предел текучести, предел прочности и твердость) обеспечивают хорошую обрабатываемость листа резанием.
Высокоремнистая трансформаторная сталь обладает повышенной хрупкостью, что затрудняет механическую обработку листа. Хрупкость анизотропной стали проверяется путем испытания образца, вырезанного из листа, на перегиб. За меру пластичности принимают число изгибов на 180°, которое выдерживает полоска данной стали, если ее зажать в тисках с губками радиусом 5 мм. Один перегиб-загиб образца от начального положения на 90° и обратное его выпрямление до начального положения. Половиной перегиба считается загиб на 900 без выпрямления.
За счет использования многочисленных передовых технических решений на разных стадиях технологического процесса производства трансформаторных сталей удается получать эти стали с очень низкими удельными магнитными потерями и высокой магнитной индукцией. Например, для анизотропных Р1,7/50 <1,0 Вт/кг и ВI0> 1,92 Тл (лист толщиной 0,23–0,35 мм). Эти показатели значительно превышают нормированные характеристики трансформаторных сталей серийного производства. Значит, резервы дальнейшего улучшения качества электротехнических сталей, в частности их магнитных свойств, существуют. К тому же, как показали исследования и расчеты, физические пределы магнитных свойств железокремнистых сплавов, к которым относятся электротехнические стали, далеко не достигнуты. Так, физический нижний предел удельных магнитных потерь 1/7/50 в анизотропной стали с 3,0% кремния находится около 0,58–0,65 Вт/кг (лист толщиной 0,35 мм), индукция В25 около 2,0 Тл.
Магнитные характеристики трансформаторных сталей, а также механические свойства готового листа в равной степени определяются как технологией выплавки и разливки стали, так и режимами горячей и холодной прокатки листа, а также последующей его термообработки [2].
2. Технология выплавки трансформаторной стали в кислородных конвертерах
Уже на начальном этапе разработки технологии выплавки трансформаторной стали было ясно, что в условиях кислородно-конвертерного цеха ОАО «ММК» можно реализовать только один вариант легирования металла кремнием – ввод ферросилиция в сталеразливочный ковш при сливе металла из конвертера. Поэтому главной задачей разрабатываемой технологии конвертерной плавки было получение в конце продувки металла, содержащего примерно 0,03% С. При продувке металла с низким содержанием углерода быстро возрастает содержание оксидов железа в шлаке (рисунок 2.1), что ведет к дополнительной потере железа и делает нестабильным усвоение кремния при легировании стали.
Рисунок 2.1- Изменение содержания компонентов шлака при проведении одной из опытных плавок
Уменьшение негативного влияния повышенной окисленности ванны при низком содержании углерода может быть достигнуто путем промежуточного удаления части шлака. Математическим моделированием было установлено, что наилучшие результаты могут быть достигнуты при удалении примерно половины имеющегося в конвертере шлака через 5–10 мин после начала продувки, когда в конвертере успевает сформироваться первичные шлак, имеющий относительно низкое (10–15%) содержание оксидов железа. Моделирование показало также, что промежуточное удаление части шлака практически не влияет на остаточное содержание серы и фосфора.
2.1 Выплавка и внепечная обработка трансформаторной стали
Для легирования стали кремнием используется ферросилиций марки ФС 65 по ГОСТ 1415–78 следующего химического состава:
[Si]= 63–68 0/0;
[S]= 0,02%;
[Р]= 0,05;
[Al]= 2,0%;
[Мn]= 0,4;
[Cr]= 0,4%,
крупностью 4 (размер кусков 20–80 мм); азотом – азотированный феррохром или азотированный ферросилиций. При поступлении в конвертерный цех ферросплавы должны быть воздушно-сухие. Влажные ферросплавы не принимаются. При выплавки серии трансформаторной стали ферросплавы должны быть прокаленные при температуре 500–600 ОС.
Недопустимо производить выплавку трансформаторной стали при наличии течи воды из ОКГ или из фурмы при попадании воды в конвертер или сталеразливочного ковша.
Для выплавки трансформаторной стали использовать чугун с содержанием серы не выше 0,025% и чистый оборотный лом. Медьсодержащие материалы для легирования стали медью присаживать в завалку или после первого периода продувки.
Перед выплавкой серии плавок трансформаторной стали нужно произвести измерение положения кислородной фурмы относительно уровня спокойной ванны. Запрещается выплавка трансформаторной стали в конвертере после использования на предыдущей плавке коксика или другого материала для науглероживания металла. При использовании углеродистых ферросплавов производить сброс контрольных навесок ферросилиция по обеим течкам.
Шихтовка, дутьевой и шлаковый режим плавки должны обеспечивать температуру металла перед выпуском из конвертера 1660–1680 °C при последующей обработке на АДС и 1650–1660 °С при обработке на УПК.
Расход извести определять из расчета получения основности шлака 3,0 -3,6. В завалку на лом присаживать 10–12 тонн извести. После продувки ванны кислородом в количестве 2500–4500 м3 присадить 5–6 тонн извести порциями по 2–3 тонны. Оставшееся количество извести вводить порциями по 1–2 тонны при израсходовании кислорода от 12000 до 16000 м3.
Продувку плавки осуществлять в два периода:
Первый период плавки:
– интенсивность продувки 1200–1300 м3/мин;
– продолжительность наводки шлака 3–5 мин;
– положение фурмы над ванной:
в период наводки шлака 5,0–2,5 м;
в рабочем режиме 2,0–2,2 м;
в конце первого периода 1,9–2,0 м;
– количество кислорода,
израсходованного в 1 период плавки 19000–20000м3.
После окончания первого периода плавки про извести повалку конвертера, скачать шлак, отобрать пробы металла и шлака для экспресс-анализа, измерить температуру ванны.
Второй период плавки:
– интенсивность продувки 1300–1450 м3/мин;
– положение фурмы над ванной по израсходовании кислорода:
до 1600–2000 м3 2,0–1,2 м;
от 1600–2000 м3 до 2500–3000 м3 1,2–1,4 м;
от 2500–3000 м3 до конца продувки 1,4–3,0 м.
– количество кислорода,
израсходованного во 2-ой период плавки 3500–4500 м3.
Второй период плавки производить с максимально-возможной интенсивностью продувки. После окончания второго периода продувки измерить температуру, отобрать пробы металла и шлака. Для гарантированного получения результатов анализа во время повалки отбирать не менее двух проб металла.
Выпуск плавки производить только после получения результатов анализа пробы металла, отобранной после первого периода продувки и измерения температуры ванны. Под выпуск использовать бывший в употреблении сталеразливочный ковш, разливший не менее 3 плавок. Не использовать новые ковши. Ввод порошковой проволоки с азотированным ферросилицием осуществляется по следующей технологии:
а) после проведения усреднительной продувки металла, производится
измерение температуры и отбор пробы металла. Затем производится корректировка химического состава и температуры металла. Следует учитывать прирост содержания кремния, содержащегося в азотированном ферросилиции. При доводке металла по температуре необходимо учитывать снижение температуры металла во время ввода порошковой проволокой.
б) ввод порошковой проволоки с азотированным ферросилицием, осуществляется со скоростью, обеспечивающей минимальный барботаж металла в месте ввода проволоки. Ориентировочная скорость ввода от 150 до 170 м/мин.
в) расстояние между нижней частью направляющей трубы и уровнем металла при вводе порошковой проволоки должно быть не более 300 – 400 мм.
г) во время ввода порошковой проволоки продувка металла аргоном производится с минимальной интенсивностью, без оголения зеркала металла.
На время остановки установки вакуумирования расход азотосодержащих материалов, присаживаемых в сталеразливочный ковш при выпуске плавки из конвертера. Должен обеспечить содержание азота при поступлении на участок внепечной обработки не более 0,007%.
При необходимости, корректировка содержание азота проводится вводом порошковой проволоки с азотированным ферросилицием из расчета получения содержание азота не более 0,007%.
Ввод порошковой проволоки с азотированным ферросилицием осуществляется, так же как и при работающей установки вакуумирования.
При отсутствии азотированного феррохрома или азотированного ферросилиция допускается выпуск плавки без присадки данных материалов[3].
после частичного ремонта. Футеровка сталеразливочного ковша должна быть выполнена с теплоизоляцией кожуха. Используемый сталеразливочного ковш должен быть горячим (с оборота). Время после окончания разливки до начала выпуска в используемый ковш должно быть не более 110 минут.
Во время выпуска производить продувку металла аргоном сталеразливочном ковше через пористые пробки, установленные в днище сталеразливочного ковша. Допускается продувка через продувочные устройства, установленные в шибер сталь ковша. Для продувки используется аргон по ГОСТ 10157 – 79, осушенный до точки росы -60оС. Массовая доля аргона должна быть не менее 99,5%. Перед выплавкой. серии трансформаторной стали произвести продувку аргонной трассы с целью удаления возможного конденсата влаги. Продувку аргоном производить максимально возможное время, не допуская выплескивания металла из ковша. Продолжительность выпуска металла должна быть не менее б минут.