Смекни!
smekni.com

Привод ленточного транспортера 2 Кинематические и (стр. 6 из 7)

При изготовлении шпоночного паза на валу дисковой фрезой коэффициент концентрации напряжений меньше, чем при изготовлении пальцевой фрезой. Дисковая фреза обеспечивает также более точное изготовление паза, однако необходимо предусматривать место для свободного выхода фрезы.

2.9.1 Соединение вал электродвигателя – быстроходный вал

lp=43-длина шпонки на валу поставляемого электродвигателя.

2.9.2 Соединение тихоходный вал - червячное колесо


lp=40-длина шпонки по ГОСТ 23360-78 в зависимости от диаметра вала.

2.9.3 Соединение тихоходный вал – упругая муфта

lp=40-длина шпонки по ГОСТ 23360-78 в зависимости от диаметра вала.

2.10 Расчет сварных соединений

Сварные соединения могут быть разделены на стыковые, нахлесточные, тавровые. В свою очередь сварные швы могут быть разделены на стыковые и угловые.

Разрушение шва при недостаточной его прочности может произойти по сечению с наименьшими размерами, такое сечение называют опасным.

Расчет стыковых швов ведут по номинальным сечению (без учета наплывов) и номинальным напряжениям. При одновременном действии нормальных

и косательных
напряжений в наиболее нагруженной точке сечения определяют эквивалентное напряжения
по четвертой теории прочности:

Угловые швы наиболее часто выполняют с нормальным поперечным сечением. Это сечение представляют как равнобедренный прямоугольный треугольник. Сторону треугольника называют катетом шва и обозначают k.

Опасное сечение при сварке частей барабана является соединение приводного вала с диском.

Касательные напряжения, которые возникают в плоскости шва можно найти по формуле:

Крутящий момент

Н*м.

Рис.8. Расчетная схема сварных соединений.

Момент инерции сечения шва (катет шва задаем k=5мм,как наиболее распространенный):


Допустимые напряжения среза находим по формуле:

Для стали 45

Н*мм2

Н*мм2

Прочность сварного соединения обеспечена.


3. Конструирование корпусных деталей

Корпусные детали являются составными частями редуктора и предназначаются для обеспечения правильного взаимного расположения сопряженных деталей редуктора, восприятия нагрузок, действующих в редукторе, защиты рабочих поверхностей зубчатых колес и подшипников от взвешенных инородных частиц окружающей среды, защиты масла от выброса его в окружающую среду при работе редуктора, отвода теплоты, а также размещения масляной ванны (у редуктора с картерной смазкой).

Габаритные размеры корпусных деталей выясняются при компоновке редуктора.

Благодаря разъему в плоскости осей валов обеспечивается наиболее удобная сборка.

Минимальная толщина стенки определяется условиями хорошего заполнения формы жидким металлом. Поэтому чем больше размеры корпуса, тем больше толщина его стенки. Рекомендуемую минимальную толщину стенок определяют из рис 17.1 в зависимости от приведенного размера

где, L,B и H –длина, ширина и высота отливки, м.

При N<0.4 d=7мм (см. [1], стр. 289).

Минимальная толщина стенки литой детали приведенного габаритного размера d, равна 7 мм.

Ориентировочное соотношение толщины стенки корпуса


Здесь Ттих – крутящий момент на тихоходном валу, Н∙м.

Из двух величин примем большую.

Ориентировочная толщина стенки крышки

Ориентировочная толщина ребра в сопряжении со стенкой корпуса

Ориентировочная толщина ребра в сопряжении со стенкой крышки

Ориентировочный диаметр фундаментных болтов

d=1.25dк

dк- диаметр болтов крепления крышки редуктора к корпусу.



4. Выбор сорта масла и системы смазки зацеплений и подшипников

Для уменьшения потерь мощности на трение и снижения интенсивности износа трущихся поверхностей, а также для предохранения их от заедания, задиров, коррозии и лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежную смазку.

Для смазывания передач широко применяют картерную систему. В корпус редуктора заливают масло так, чтобы венцы колес были в него погружены. Колеса при вращении увлекают масло, разбрызгивая его внутри корпуса. Масло попадает на внутренние стенки корпуса, откуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которая покрывает поверхность расположенных внутри корпуса деталей.

Принцип назначения сорта масла следующий: чем выше окружная скорость колеса, тем меньше должна быть вязкость масла и чем выше контактные давления в зацеплении, тем большей вязкостью должно обладать масло. Поэтому требуемую вязкость масла определяют в зависимости от контактного напряжения и окружной скорости колес.

Контактные напряжения (из распечатки).

Ориентировочное значение вязкости масел для червячных передач определяют по рис. 19.2 (см. [3] стр. 346) (заштрихованная зона) в зависимости от величины

где ns – скорость скольжения в зацеплении, м/с (см. [3] стр. 97).

Скорость скольжения сопряженных профилей при зацеплении в полюсе рассчитывается по формуле

где d1 – диаметр делительной окружности червяка, мм; n1 - частота вращения червяка, с-1.

Кинематическая вязкость

По таблице 11.2 [1, c. 173] выбирается марка масла И-Т-С-320.

И – индустриальное,

Т – тяжело нагруженные узлы,

С – масло с антиокислителями, антикоррозионными и противоизносными присадками.

Подшипники смазываем тем же маслом. Так как имеем картерную систему смазывания, то они смазываются разбрызгиванием.

В червячных редукторах смазывание погружением применяют при скоростях скольжения ns < 15 м/с. При верхнем расположении червяка смазывание зацепления обеспечивается погружением червячного колеса. Глубина погружения – не менее высоты его зуба, но обычно не превышает одной трети радиуса колеса.

Существует весьма ориентировочная рекомендация, в соответствии с которой назначают объем масла в ванне в пределах (0.3÷0.4)10-3 м3 на 1 кВт передаваемой мощности. В соответствии с этой рекомендацией можно установить минимальный объем масляной ванны равным 1.4 л.


5. Выбор и расчет муфты

В следствии несоосности и других погрешностях соединения тихоходного и приводного вала необходима упругая муфта. Для снижения массы и габаритов привода выбираем муфту с упругими металлическими элементами.Муфту со стальными стержнями.

В соответствии с указаниями (см.1 стр. 345):

D=(1.15..1.20)=140 мм.