Вследствие выравнивания состава и температуры металла, снижения содержания в нём неметаллических включений сталь, обработанная инертным газом в ковше, имеет повышенные пластические свойства и ударную вязкость, а также пониженную анизотропность механических свойств.
Другим видом внепечной обработки стали является обработка металла вакуумом. Обработка металла вакуумом (снижение давления над расплавом) влияет на протекание тех реакций и процессов, в которых принимает участие газовая фаза. Газовая фаза образуется, в частности при протекании реакции окисления углерода; газовая фаза образуется при протекании процессов выделения растворенных в металле водорода и азота, а также процессов испарения примесей цветных металлов [43]. Обработка вакуумом воздействует на характер протекания именно этих реакций.
В настоящее время в различных странах успешно работают сотни установок внепечного вакуумирования различных конструкций. Самым простым способом является способ вакуумирования в ковше. Лучшие результаты при этом получаются при вакуумировании нераскисленного металла. Растворённый в металле кислород взаимодействует при вакуумировании с растворённым в металле углеродом; из ванны, кроме того, энергично выделяется растворённый в металле водород и ванна вскипает [44]. После интенсивной дегазации в металл вводят раскислители и легирующие добавки. Недостатком вакуумирования в ковше является невысокая эффективность метода при вакуумировании относительно больших масс металла (> 50 т) и неравномерность состава металла в ковше после ввода раскислителей и легирующих вследствие слабого перемешивания всей массы металла [45]. Положение улучшается в случае, когда предусматривается продувка металла в ковше инертным газом. Но при этом к обычным потерям тепла при выпуске и выдержке в ковше добавляются потери тепла в результате нагрева продуваемого через металл газа [44, 45].
В настоящее время наиболее распространёнными способами обработки металла вакуумом в ковше являются:
1) помещение ковша с металлом в вакуумную камеру и последующее перемешивание металла инертным газом; раскислители вводят в ковш из бункера, находящегося в вакуумной камере; данный метод часто называют "ковшовым вакуумированием";
2) вакуумирование при переливе из ковша в ковш или из ковша в изложницу; поскольку обработке вакуумом подвергается "струя" металла, данный метод называют "струйным вакуумированием" или "вакуумирование струи";
3) порционное вакуумирование;
4) циркуляционное вакуумирование.
Два последних способа в настоящее время получили наибольшее распространение. В производстве высококачественного металла стали применять метод вдувания порошков различного состава.
Целью продувки металла порошкообразными материалами (или вдувание в металл порошкообразных материалов) является обеспечение максимального контакта вдуваемых твёрдых реагентов с металлом, максимальной скорости взаимодействия реагентов с металлом и высокой степени использования вдуваемых реагентов. Достоинством метода является введение реагента и металла струёй газа-носителя, который оказывает положительное воздействие на металл [39, 46]. Газом-носителем может быть:
1) окислитель (например, кислород или воздух);
2) восстановитель (например, природный газ);
3) нейтральный газ (например, аргон).
В качестве вдуваемых реагентов используют шлаковые смеси, а также металлы или сплавы металлов [47]. Метод вдувания порошков используют для следующих целей:
1. Дефосфорация металла. При использовании шлаковых смесей для удаления фосфора в металл обычно вдувают в струе кислорода смесь, состоящую из извести, железной руды и плавикового шпата [46];
2. Десульфурация металла. Для удаления серы в металл вдувают в струе аргона или азота флюсы на основе извести и плавикового шпата; смеси, содержащие кроме шлакообразующих также кальций или магний; реагенты, которые вследствие больших энергий взаимодействия и соответствующего пироэффекта обычными способами вводить в металл нельзя (кальций, магний) [46,48,49];
3. Раскисление и легирование, в том числе введение металлов, которые вследствие токсичности обычными методами вводить опасно (свинец, селен, теллур);
4. Ускорение шлакообразования (например, в конвертерных цехах вдувание порошкообразной извести используют при переделе высокофосфористых чугунов);
5. Науглероживание. Вдувание в металл порошкообразных карбонизаторов (графита, кокса и т.п.) позволяет решать различные задачи: - корректировать содержание углерода в металле;
- при недостатке или отсутствии чугуна повышать в металле содержание углерода до пределов, необходимых для нормального ведения процесса; - раскислять металл (вдувание в окисленный металл порошка углерода вызывает бурное развитие реакции обезуглероживания, содержание кислорода при этом уменьшается, а выделяющиеся пузыри монооксида углерода "промывают" ванну от газов и неметаллических включений). Порошок графита или кокса может вводиться в металл непосредственно в печи, а также в ковш или на струю металла, выпускаемого из печи в ковш [29]. Существуют и другие цели использования этого метода.
Наибольшее распространение получила практика использования метода для введения в сталь таких реагентов, как кальций и магний.
Наиболее широкое развитие в производстве высококачественной стали в настоящее время уделяется применению при внепечной обработке металла методу обработки стали синтетическими шлаками.
Перемешивание металла со специально приготовленным (синтетическим) шлаком позволяет интенсифицировать переход в шлак тех вредных примесей (серы, фосфора, кислорода), которые удаляются в шлаковую фазу. В тех случаях, когда основная роль в удалении примесей принадлежит шлаковой фазе, скорость процесса пропорциональна площади межфазной поверхности. Если основной задачей является удаление из металла неметаллических включений определённого состава, то соответственно подбирают состав синтетического шлака (например, металл, выплавленный в кислой печи, обрабатывают основным шлаком; металл, выплавленный в основной печи, кислым) [26]. Если необходимо снижение содержания серы в металле, то подбирают шлак с максимальной активностью СаО и минимальной активностью FeO. Во многих случаях задача заключается, во-первых, в получении шлака заданных состава и температуры, и, во-вторых, в разработке способа получения максимальной поверхности контакта шлаковой и металлических фаз. При этом должны быть обеспечены условия, необходимые для последующего отделения шлака от металла. Обработка стали в ковше жидкими синтетическими шлаками как способ удаления из металла нежелательных примесей была предложена, в 1925 г. советским инженером А.С. Точинским; в 1933 г. способ обработки металла жидкими известково-глинозёмистыми шлаками был запатентован французским инженером Р. Перреном [50, 51]. Практическую проверку прошёл ряд разновидностей способа обработки металла шлаками различного состава:
1) жидкими известково-железистыми шлаками для дефосфорации;
2) кислым шлаком для снижения содержания кислорода и оксидных неметаллических включений;
3) жидкими известково-глинозёмистыми шлаками для десульфурации и раскисления металла;
4) шлаками различного состава во время разливки и кристаллизации металла для удаления вредных примесей и получения хорошей поверхности слитка [27].
А.С. Точинский впервые в мире провёл промышленные эксперименты по дефосфорации бессемеровской стали известково-железистым шлаком и рафинировал основную мартеновскую сталь кислым шлаком для раскисления (содержание кислорода в металле удавалось снизить на 30-55 %) [52]. Позднее известково-железистые шлаки (60-65% СаО и 20-35% оксидов железа) неоднократно применяли для обработки конвертерной стали, получая высокую степень дефосфорации. Так, содержание фосфора в томасовской стали удавалось снизить с 0,06 до 0,01 %, а в рельсовой бессемеровской стали с 0,05-0,09 до 0,01-0,03 % [45]. Однако опыт показал, что обработка известково-железистым шлаком углеродистого металла приводит, вследствие протекания реакции (FeO) + [С] = СОг + Fеж к бурному вскипанию и выбросам.
Кроме того, обработка железистым шлаком затрудняет проведение операции раскисления металла.
Метод обработки стали известково-глинозёмистым шлаком исследовался ЦНИИЧМ и рядом заводов. В соответствии с разработанной технологией шлаки с высоким содержанием СаО и добавками Аl2О3 (для снижения температуры их плавления и обеспечения необходимой жидкотекучести) расплавляют в специальной электропечи и заливают в сталеразливочный ковш при выпуске стали из сталеплавильной печи или из конвертера [53]. При сливе металла на находящийся в ковше синтетический шлак обе взаимодействующие фазы (сталь и шлак) интенсивно перемешиваются, шлак эмульгирует в металл и в какой-то степени эмульгирует металл в шлаке с последующим разделением фаз. Интенсивность и глубина протекания процесса определяются высотой падения струи металла и шлака, физическими характеристиками и составом шлака. Основной целью является обеспечение в процессе обработки максимальной межфазной поверхности. Наибольшее влияние при этом имеет высота падения струи металла, а также вязкость шлака.
Содержащаяся в металле сера взаимодействует с СаО шлака и переходит в шлак. Поскольку синтетический шлак содержит обычно ничтожно малые количества таких оксидов, как FeO и МnО, то обработка шлаком сопровождается снижением окисленности металла; в шлак переходит также некоторое количество таких оксидных включений, которые хорошо смачиваются синтетическим шлаком или взаимодействует с ним.