Смекни!
smekni.com

Обработка металла под давлением (стр. 2 из 15)

Вследствие выравнивания состава и температуры металла, снижения со­держания в нём неметаллических включений сталь, обработанная инертным газом в ковше, имеет повышенные пластические свойства и ударную вяз­кость, а также пониженную анизотропность механических свойств.

Другим видом внепечной обработки стали является обработка металла вакуумом. Обработка металла вакуумом (снижение давления над расплавом) влия­ет на протекание тех реакций и процессов, в которых принимает участие га­зовая фаза. Газовая фаза образуется, в частности при протекании реакции окисления углерода; газовая фаза образуется при протекании процессов выделения растворенных в металле водорода и азота, а также процессов испа­рения примесей цветных металлов [43]. Обработка вакуумом воздействует на характер протекания именно этих реакций.

В настоящее время в различных странах успешно работают сотни установок внепечного вакуумирования различных конструкций. Самым простым способом является способ вакуумирования в ковше. Лучшие результаты при этом получаются при вакуумировании нераскисленного металла. Растворён­ный в металле кислород взаимодействует при вакуумировании с растворён­ным в металле углеродом; из ванны, кроме того, энергично выделяется рас­творённый в металле водород и ванна вскипает [44]. После интенсивной де­газации в металл вводят раскислители и легирующие добавки. Недостатком вакуумирования в ковше является невысокая эффективность метода при вакуумировании ­относительно больших масс металла (> 50 т) и неравномер­ность состава металла в ковше после ввода раскислителей и легирующих вследствие слабого перемешивания всей массы металла [45]. Положение улучшается в случае, когда предусматривается продувка металла в ковше инертным газом. Но при этом к обычным потерям тепла при выпуске и выдержке в ковше добавляются потери тепла в результате нагрева продуваемого через металл газа [44, 45].

В настоящее время наиболее распространёнными способами обработки металла вакуумом в ковше являются:

1) помещение ковша с металлом в ва­куумную камеру и последующее перемешивание металла инертным газом; раскислители вводят в ковш из бункера, находящегося в вакуумной камере; данный метод часто называют "ковшовым вакуумированием";

2) вакуумирование при переливе из ковша в ковш или из ковша в изложницу; поскольку обработке вакуумом подвергается "струя" металла, данный метод называют "струйным вакуумированием" или "вакуумирование струи";

3) порционное вакуумирование;

4) циркуляционное вакуумирование.

Два последних спосо­ба в настоящее время получили наибольшее распространение. В производстве высококачественного металла стали применять метод вдувания порошков различного состава.

Целью продувки металла порошкообразными материалами (или вдува­ние в металл порошкообразных материалов) является обеспечение макси­мального контакта вдуваемых твёрдых реагентов с металлом, максимальной скорости взаимодействия реагентов с металлом и высокой степени использо­вания вдуваемых реагентов. Достоинством метода является введение реаген­та и металла струёй газа-носителя, который оказывает положительное воз­действие на металл [39, 46]. Газом-носителем может быть:

1) окислитель (на­пример, кислород или воздух);

2) восстановитель (например, природный газ);

3) нейтральный газ (например, аргон).

В качестве вдуваемых реагентов ис­пользуют шлаковые смеси, а также металлы или сплавы металлов [47]. Метод вдувания порошков используют для следующих целей:

1. Дефосфорация металла. При использовании шлаковых смесей для удаления фосфора в металл обычно вдувают в струе кислорода смесь, состоящую из извести, железной руды и плавикового шпата [46];

2. Десульфурация металла. Для удаления серы в металл вдувают в струе аргона или азота флюсы на основе извести и плавикового шпата; смеси, содержащие кроме шлакообразующих также кальций или магний; реагенты, которые вследствие больших энергий взаимодействия и соответствующего пироэффекта обычными способами вводить в металл нельзя (кальций, маг­ний) [46,48,49];

3. Раскисление и легирование, в том числе введение металлов, которые вследствие токсичности обычными методами вводить опасно (свинец, селен, теллур);

4. Ускорение шлакообразования (например, в конвертерных цехах вдувание порошкообразной извести используют при переделе высокофосфористых чугунов);

5. Науглероживание. Вдувание в металл порошкообразных карбонизаторов (графита, кокса и т.п.) позволяет решать различные задачи: - корректиро­вать содержание углерода в металле;

- при недостатке или отсутствии чугуна повышать в металле содержание углерода до пределов, необходимых для нормального ведения процесса; - раскислять металл (вдувание в окисленный металл порошка углерода вызывает бурное развитие реакции обезуглероживания, содержание кислорода при этом уменьшается, а выделяющиеся пузы­ри монооксида углерода "промывают" ванну от газов и неметаллических включений). Порошок графита или кокса может вводиться в ме­талл непосредственно в печи, а также в ковш или на струю металла, выпус­каемого из печи в ковш [29]. Существуют и другие цели использования этого метода.

Наибольшее распространение получила практика использования метода для введения в сталь таких реагентов, как кальций и магний.

Наиболее широкое развитие в производстве высококачественной стали в настоящее время уделяется применению при внепечной обработке металла методу обработки стали синтетическими шлаками.

Перемешивание металла со специально приготовленным (синтетиче­ским) шлаком позволяет интенсифицировать переход в шлак тех вредных примесей (серы, фосфора, кислорода), которые удаляются в шлаковую фазу. В тех случаях, когда основная роль в удалении примесей принадлежит шла­ковой фазе, скорость процесса пропорциональна площади межфазной по­верхности. Если основной задачей является удаление из металла неметалли­ческих включений определённого состава, то соответственно подбирают со­став синтетического шлака (например, металл, выплавленный в кислой печи, обрабатывают основным шлаком; металл, выплавленный в основной печи, кислым) [26]. Если необходимо снижение содержания серы в металле, то подбирают шлак с максимальной активностью СаО и минимальной активностью FeO. Во многих случаях задача заключается, во-первых, в получении шлака заданных состава и температуры, и, во-вторых, в разработке способа получения максимальной поверхности контакта шлаковой и металлических фаз. При этом должны быть обеспечены условия, необходимые для после­дующего отделения шлака от металла. Обработка стали в ковше жидкими синтетическими шлаками как способ удаления из металла нежелательных примесей была предложена, в 1925 г. советским инженером А.С. Точинским; в 1933 г. способ обработки металла жидкими известково-глинозёмистыми шлаками был запатентован французским инженером Р. Перреном [50, 51]. Практическую проверку прошёл ряд разновидностей способа обработки ме­талла шлаками различного состава:

1) жидкими известково-железистыми шлаками для дефосфорации;

2) кислым шлаком для снижения содержания кислорода и оксидных неметаллических включений;

3) жидкими известково-глинозёмистыми шлаками для десульфурации и раскисления металла;

4) шлаками различного состава во время разливки и кристаллизации металла для удаления вредных примесей и получения хорошей поверхности слитка [27].

А.С. Точинский впервые в мире провёл промышленные эксперименты по дефосфорации бессемеровской стали известково-железистым шлаком и рафинировал основную мартеновскую сталь кислым шлаком для раскисле­ния (содержание кислорода в металле удавалось снизить на 30-55 %) [52]. Позднее известково-железистые шлаки (60-65% СаО и 20-35% оксидов же­леза) неоднократно применяли для обработки конвертерной стали, получая высокую степень дефосфорации. Так, содержание фосфора в томасовской стали удавалось снизить с 0,06 до 0,01 %, а в рельсовой бессемеровской ста­ли с 0,05-0,09 до 0,01-0,03 % [45]. Однако опыт показал, что обработка из­вестково-железистым шлаком углеродистого металла приводит, вследствие протекания реакции (FeO) + [С] = СОг + Fеж к бурному вскипанию и выбро­сам.

Кроме того, обработка железистым шлаком затрудняет проведение операции раскисления металла.

Метод обработки стали известково-глинозёмистым шлаком исследовал­ся ЦНИИЧМ и рядом заводов. В соответствии с разработанной технологией шлаки с высоким содержанием СаО и добавками Аl2О3 (для снижения температуры их плавления и обеспечения необходимой жидкотекучести) расплав­ляют в специальной электропечи и заливают в сталеразливочный ковш при выпуске стали из сталеплавильной печи или из конвертера [53]. При сливе металла на находящийся в ковше синтетический шлак обе взаимодействую­щие фазы (сталь и шлак) интенсивно перемешиваются, шлак эмульгирует в металл и в какой-то степени эмульгирует металл в шлаке с последующим разделением фаз. Интенсивность и глубина протекания процесса определя­ются высотой падения струи металла и шлака, физическими характеристика­ми и составом шлака. Основной целью является обеспечение в процессе об­работки максимальной межфазной поверхности. Наибольшее влияние при этом имеет высота падения струи металла, а также вязкость шлака.

Содержащаяся в металле сера взаимодействует с СаО шлака и переходит в шлак. Поскольку синтетический шлак содержит обычно ничтожно малые количества таких оксидов, как FeO и МnО, то обработка шлаком сопровож­дается снижением окисленности металла; в шлак переходит также некоторое количество таких оксидных включений, которые хорошо смачиваются синтетическим шлаком или взаимодействует с ним.