Смекни!
smekni.com

Обработка металла под давлением (стр. 3 из 15)

Разновидностью метода обработки стали жидкими синтетическими шлаками является совмещённый процесс (или так называемый метод смещения), когда в сталеразливочном ковше одновременно смешиваются и сталь, и син­тетический шлак, и жидкая лигатура (расплавленные ферросплавы). Исполь­зование этой технологии позволяет, например, смешивать металл из 100-т мартеновской плавки и лигатуру, полученную в 20-т дуговой электропечи и получать 120 т высококачественной стали электропечного сортамента. Метод смещения был разработан на ИжМЗ [54].

Методы смешения и совмещённый позволяют получить высококачественную сталь с использованием относительно простого оборудования. Во всех случаях при обработке металла синтетическим шлаком возможно дос­тижение стандартного состава и более стабильных показателей качества от плавки к плавке. Расход синтетического шлака относительно невелик: 3-5 % от массы металла. При относительно малом количестве шлака легче обеспе­чить стандартность его состава и свойств.

К основным требованиям, предъявляемым к синтетическим известково-глинозёмистым шлакам относятся минимальная окисленность (это обеспечивает хорошие условия для раскисления стали и её десульфурации) и макси­мальная активность СаО (это обеспечивает хорошие условия для десульфу­рации стали). В связи с этим синтетические известково-глинозёмистые шлаки не должны содержать оксидов железа, а содержание кремнезёма должно быть минимальным. Присутствие фосфора в таких шлаках исключается, что­бы не допустить его переход в металл при обработке. В тех случаях, когда в шихте, из которой плавят шлак, содержится некоторое количество кремнезё­ма, в состав шлака вводят MgO, который образует силикаты магния. Умень­шается вредное воздействие кремнезёма, снижающего активность СаО.

Обычный состав синтетического шлака (%) следующий: СаО 50-55; А12О3 37-43; SiО2

7 (в некоторых случаях SiО2 до 10-15; MgO
7). Температура плавления шлака в зависимости от состава изменяется от 1400 °С (в шлаке 50-55 % СаО; 38-43 % А12О3 и
4,0 % SiО2) до 1300 °С (в шлаке 6-7 % SiО2 и 6-7 % MgO) [5].

При обработке металла синтетическим шлаком такого состава (высокая основность и низкая окисленность) протекают процессы:

2. Десульфурации. Обычно после обработки шлаком содержание серы в металле снижается до 0,002-0,010 %;

1.

Раскисления. В соответствии с законом распределения

(1)

Поскольку в синтетическом шлаке значение

ничтожно мало, окисленность металла снижается (в 1,5-2,0 раза);

3. Удаление неметаллических включений. В тех случаях, когда

межфазное натяжение на границе капля синтетического шлака – неметаллическое включение

меньше межфазного натяжения на границе металл - неметаллическое включение , т.е при < , капли синтетического шлака будут рафинировать металл от включений, всплывать вверх, унося с собой неметаллические включения. Соотношение между величинами
и
зависит от состава включений. Практика показала, что общее содер­жание неметаллических включений после обработки синтетическим шлаком уменьшается примерно в два раза [31].

Достоинством такого технологического приёма, как обработка стали синтетическим шлаком, является её кратковременность. Вся операция полностью осуществляется за время выпуска (слива) металла из агрегата в ковш, т.е. за несколько минут: производительность агрегатов при этом не только не уменьшается, но даже возрастает, так как такие технологические операции, как десульфурация и раскисление, переносятся в ковш.

При проведении операции обработки металла шлаком приходится учитывать ряд моментов:

1) нежелательность попадания в ковш, в котором про­изводится обработка, вместе с металлом также и шлака из печи или конвер­тера;

2) необходимость введения в ковш помимо синтетического шлака также и раскислителей (а при выплавке легированных сталей также и легирующих материалов);

3) изменение в процессе обработки состава шлака.

Обработка синтетическим шлаком позволяет несколько уменьшить
окисленность металла, однако не настолько, чтобы полностью отказаться от
применения раскислителей, поэтому помимо шлака в ковш вводится необходимое количество раскислителей. Учитывая низкую плотность ферросилиция, необходимое его количество загружают на дно ковша ещё до заливки в ковш синтетического шлака. После выпуска плавки на струю падающей в ковш стали присаживают такие материалы, как ферромарганец и феррохром, затем - сплавы, содержащие титан, ванадий, цирконий и т.п. Алюминий вводят в глубь ковша на штангах или в виде проволоки после окончания выпуска плавки.

В процессе перемешивания металла со шлаком состав шлака претерпевает определённые изменения. Эти изменения связаны со следующим:

1. При перемешивании шлак взаимодействует с футеровкой ковша,
часть футеровки (обычно состоящая из SiО2 и А12О3) переходит в шлак;

2. Из металла удаляется и переходит в шлак сера (в виде CaS);

3. Вводимые в ковш раскислители частично окисляются, образуя оксиды (SiО2, А12О3, МnО) и переходят в шлак;

4. Часть конечного шлака обычно попадает в ковш, содержащиеся в конечном шлаке оксиды железа затрудняют протекание процессов раскисления.

Особенно опасно попадание в ковш конечного шлака из-за содержащегося в нём фосфора: в процессе раскисления почти весь фосфор, содержа­щийся в шлаке, восстанавливается и переходит в металл. Разбавление синте­тического шлака в результате всех этих процессов может достигать

30...40 %.

Следует иметь в виду, что метод обработки металла синтетическим шлаком в обычных условиях обеспечивает стандартные результаты десульфурации до известных пределов (обычно не более чем до 0,005...0,007 %) [5, 31]. В тех случаях, когда необходимо устойчиво получать более низкие концентрации серы, используют другие способы (основная футеровка ковшей, интенсивное перемешивание шлака с металлом, продувка аргоном и др.). Обработка металла синтетическим шлаком широко используется при различных вариантах технологии. Так, распространена практика, при которой обработка синтетическим шлаком дополняется продувкой металла в ковше инертным газом [40, 55].

В настоящее время всё большее значение уделяется применению при обработке металла твёрдым синтетическим шлакам. Обычно в состав таких смесей вводят СаО и. CaF2. Расход таких смесей колеблется от 3 до 10 кг/т [56]. И в этом случае наилучшие результаты по десульфурации и получению стали с минимальным содержанием неметаллических включений получают при одновременном воздействии на металл с десульфурирующей синтетиче­ской смеси и раскислителей.

Чаще других используют три технологических приёма:

1. Подача на струю металла смеси, состоящей из извести, плавикового шпата и алюминия;

2. Присадка десульфурирующей смеси, состоящей из извести и плавикового шпата, на дно ковша перед выпуском металла; при этом одновременно на дно ковша присаживается требуемое количество ферросилиция. Температура металла при использовании для десульфурации синтетических смесей в твёрдом виде должна быть выше обычной на . В некоторых случаях для облегчения условий быстрого образования активного шлака ковш вовре­мя покачивают или перемещают вперёд и назад. Обработка таким методом стали с повышенным содержанием углерода позволяет снизить содержание серы (по сравнению с последней пробой из конвертера) почти вдвое;

3. Подача смеси извести, плавикового шпата и кальцинированной соды при помощи бункера-дозатора на поверхность струи металла, стекающего по выпускному желобу в ковш. При падении струи и ударе её о дно ковша или об уже накопившийся в нём слой жидкого металла происходит перемешива­ние обеих фаз и быстрая десульфурация металла. Расход смеси составляет 1,2-1,6% [34].

В последние годы проведено ряд исследований, имеющих целью определить рациональные и экономически обоснованные пути использования твёрдых шлакообразующих смесей (ТШС).

С целью выбора более эффективных схем внепечного рафинирования ЦНИИЧМ проводился анализ частичной или полной замене синтетического шлака ТШС, которая содержала известь и плавиковый шпат фракции 50-20 мкм в соотношении 4:1. Технологическую присадку этой смеси осуществля­ли с использованием средств механизированной подачи в сталеразливочный ковш в начале выпуска плавки из конвертера непосредственно на струю сли­ваемого металла. Удельный расход ТШС составлял 5-6 кг/т стали в случае частичной замены синтетического шлака [45]. При полной замене синтетиче­ского шлака ТШС удельный расход увеличивался до 12-14 кг/т стали. Анали­зу подвергали три варианта внепечного рафинирования трубных сталей группы ГФБ (09Г2ФБ, 10Г2ФБУ, 10Г2ФБ) [45].

Результаты эксперимента приведены в табл.1 [45]. В первом варианте десульфурация металла проводилась известково-глинозёмистым шлаком в

350-т сталеразливочном ковше с кислой набивной или шамотной кирпич­ной футеровкой с уменьшенным (на 15-20 %) удельным расходом известково-глинозёмистого шлака и добавками ТШС. В третьем варианте десульфурацию металла проводили только ТШС в 350-т сталеразливочном ковше с высокоглинозёмистой или смолодоломитовой футеровкой, т.е. произвели полную замену синтетического шлака смесью извести и плавикового шпата.