В первых двух вариантах наблюдалось значительное колебание содержания серы в чугуне. Необходимый уровень содержания серы в исходной шихте поддерживали предварительной десульфурацией жидкого чугуна гранулированным магнием и двойным скачиванием шлака, а также применением низкосернистого оборотного лома. Установлено, что использование в металлошихте жидкого чугуна с содержанием серы до 0,015 % и оборотного низкосернистого лома в количестве 50 % от общей его массы обеспечивают стабильный химический состав стали и максимальный выход годных непре-рывнолитых слябов (98 %).
Во втором варианте в отличие от первого наблюдался некоторый рост исходного содержания серы в металле на повалке конвертера из-за отсутствия в металлошихте низкосернистого оборотного лома. В третьем варианте использовали глубокодесульфурированный чугун, двойное скачивание шлака, низкосернистый лом в металлошихте. В результате исследования установлено, что внедрение третьего варианта технологии внепечной обработки снижает текущие затраты относительно первого варианта в два раза. Благодаря производству трубного металла в конвертерном цехе с использованием ТШС и ковшей с основной футеровкой нижний предел по содержанию серы в готовой стали дополнительно уменьшился до 0,004 %, повысилась усвояемость алюминия, марганца и кремния в жидкой стали в процессе корректировки её химического состава. Наряду с указанными преимуществами необходимо обратить внимание на уровень изменения тепловых потерь и способы их компенсации.
Таблица 1
Сравнительные показатели внепечной обработки трубной стали группы ГФБ в 350-т ковшах
Показатели | Варианты технологии | ||
1 | 2 | 3 | |
1 | 2 | 3 | 4 |
Число плавок | 783 | 924 | 220 |
Содержание серы, % в жидком чугуне после десульфурации магнием в конвертере на повалке в готовой стали Степень десульфурации, % Расход, кг/т: металлошихты: жидкого чугуна малосернистого лома реагентов на раскисление и десульфурацию: алюминия ТШС в том числе: извести плавикового шпата синтетического шлака силикокальция гранулированного магния огнеупоров Снижение температуры жидкой стали в ковше, | 0,043 0, 0140 0,017 0,005 71,1 927 0…140 4,8 - - - 48,6 2,8 0,7 7,1 11 | 0,038 0,025 0,018 0,0056 68,8 922 - 4,1 4,6 3,7 0,9 42,7 2,6 0,65 9,2 10 | 0,036 0,0054 0,0078 0,0043 67,5 990 280 3,1 11,6 9,5 2,1 - 1,4 1,2 3,2 11 |
Уменьшение количества синтетического шлака на плавку и добавка в ковш ТШС (второй вариант) увеличивают потери тепла на нагрев и расплавление ТШС. Отмечено также снижение температуры металла в ковше с 10 (в первом и втором) до 32 °С (в третьем варианте). Установлено, что компенсация потерь тепла путём повышения расхода жидкого чугуна увеличивает энергоёмкость рафинирования по третьему варианту на 55 %. В связи с этим приняты меры для компенсации потерь тепла более рациональными способами [45].
В условиях кислородно-конвертерного цеха повышенные потери тепла компенсируются путём подогрева огнеупорной футеровки сталеразливочного ковша до 800 °С. Для этого стенды в ковшовом пролёте оборудованы высокотемпературными горелками, а сталеразливочные ковши снабжены специальными крышками для утепления. Использование указанных мероприятий снижает до минимума потери тепла по третьему варианту и повышает эффективность внепечного рафинирования стали.
Проведены исследования по применению отходов производства вторичного алюминия, содержащих 65-70 % Аl2О3; 2-4 % SiО2; 2,8-3,2 % СаО. Смесь в ковш подавали одновременно с раскислителями при заполнении его металлом на 1/8 высоты в течение 2...3 мин. Применение ТШС значительно увеличивает степень десульфурации металла; при этом снижается угар кремния и марганца в ковше соответственно на 9,9 и 4,7 %, расход алюминия в слитках уменьшается на 250 г/т [45].
Обработка металла в ковше ТШС имеет два основных недостатка: малая (по современным требованиям к качеству металла) степень десульфурации и нестабильность получаемых при обработке результатов. Значительным достоинством метода является его простота и доступность, а также возможность эффективно использовать отходы различных производств.
Так, УНИИМ разработана и внедрена технология обработки стали ТШС, состоящей из извести и отходов производства алюминия. После сушки и просеивания (ячейки 50x50 мм) ТШС загружают в контейнеры и присаживают в ковш сразу после введения раскислителей. В результате в ковше формируется достаточно подвижный шлак, обладающий высокой десульфурирующей способностью и адгезионной способностью по отношению к включениям. В результате среднее содержание серы в готовом металле снизилось с 0,026 до 0,021 % [45].
Метод расплавления в отдельном агрегате синтетического шлака для последующего слива этого шлака в сталеразливочный ковш постепенно уступает место методу наведения шлака требуемого состава в агрегате внепечной обработки при одновременном перемешивании и металла и шлака, при этих условиях метод использования ТШС получает самое широкое развитие.
Продолжаются исследования в направлении поиска путей повышения эффективности использования шлаковых смесей. Известно, что более интенсивное перемешивание позволяет получать более высокую степень десульфурации. Исследования проводили используя 6-т ковш с доломитовой футеровкой. После расплавления и нагрева до 1730-1770 0 С в 12-т электропечи металл выпускали в ковш, одновременно присаживая на струю шлакообразующую смесь. Использовали шлаковые смеси, изготовленные из CaO,
CaF2 и гранул алюминия. После обработки аргоном в течение 4-6 мин металл вновь возвращали в печь для дополнительного нагрева. Опробовано семь способов перемешивания газом: через пористую пробку в днище ковша, через пористую пробку и крышку на ковше, при помощи пульсирующего потока газа, через фурму сверху и пористую пробку в днище, через сопла в боковой стенке, при помощи вращающейся фурмы. Установили, что при таком способе можно снизить содержание серы с 0,025-0,03 до 0,001 %, причём половина всего количества серы удаляется во время выпуска стали. Установлено, что для получения наилучшего результата наиболее подходит шлак, формирующийся из смеси 72 % СаО, 18 % CaF2 и 10 % гранул алюминия, которую необходимо присаживать в ковш во время выпуска, а печной шлак при этом нужно отсекать; должна быть 0,001, а способ перемешивания должен обеспечивать воспроизводимые условия перемешивания при его высокой интенсивности [45].Вследствие того, что шлакообразующая смесь содержит алюминий гранулированный, металл в печи перед выпуском не перегревали. Затраты тепла на нагрев и плавление смеси полностью компенсировались теплом, выделяющимся при окислении алюминия. Шлак при плавлении шлакообразующей смеси имел следующий химический состав, %: СаО - 41,62;
- 9,85; А12О3 - 39,26; FeO- 1,20; Fe2О3 - 0,51; MnO- 2,19; MgO- 5,10; S- 0,53 (пробы отбирали из сталеразливочного ковша в конце выпуска) [57].В результате внепечной обработки степень десульфурации металла составила в среднем 30 % (22-54 %). Макроструктура была удовлетворительной. Результаты оценки микроструктуры показали, что в рафинированном металле преобладает природное зерно балла 8, а в металле текущего производства - балла 7. Это свидетельствует о более высокой раскисленности опытного металла (0,022 % А1ост) по сравнению с обычным (0,0018 % А1ост) [57].
Установлено, что применение алюминия гранулированного при внепечной обработке повышает пластические свойства готового металла: относительное удлинение и сужение в среднем соответственно на 1,8 и 6,1 % выше, чем у стали, выплавленной по обычной технологии. Кроме того, при равных значениях временного сопротивления и предела текучести ударная вязкость стали в продольном и поперечном направлении в среднем на 10,4 и 8,4 % выше, чем у стали без шлаковой обработки [57].
На опытных плавках вследствие уменьшения угара расход раскислителей (ферромарганца, ферросилиция и алюминия) уменьшился соответственно на 0,42; 0,44 и 0,04 кг/т стали [57].
1.2 Исследования по введению раскислителей в металл и влияние вводимых элементов на качество стали
Условия проведения операции раскисления при плавке стали в плавильных агрегатах весьма неблагоприятны, так как, помимо кислорода, растворённого в жидком металле, с раскислителями в момент их ввода в металл взаимодействует кислород газовой фазы. Кроме того, проходя через шлак, раскислители взаимодействуют с оксидами железа шлака. При выпуске металла в ковш струя металла взаимодействует с атмосферой. То же самое происходит, когда струя металла выходит из ковша при разливке стали [25]. В результате определённая часть раскислителей (иногда весьма значительная) расходуется не на взаимодействие с кислородом, растворённым в металле. Эта часть окислившихся не по прямому назначению раскислителей называется угаром раскислителей. Современные средства контроля плавки не позволяют с достаточной точностью предсказать заранее величину угара раскислителей, эта величина от плавки к плавке может колебаться в заметных пределах, что затрудняет получение стали строго определённого состава. Значительный угар элементов нежелателен и из чисто экономических соображений.