Смекни!
smekni.com

Обработка металла под давлением (стр. 6 из 15)

Процесс формирования частиц имеет ряд особенностей: время полёта жидкой частицы от торца тарельчатого гранулятора до поверхности водяной завесы на стенках бака машины не должно быть меньше времени её сфероидизации, иначе формируются дробинки вытянутой формы [60]. К вытянутой форме гранул приводит снижение времени пребывания частиц в жидком со­стоянии вследствие образования на их поверхности плёнки тугоплавких ок­сидов (например, Аl2О3), резко повышающих вязкость капли и, тем самым, её сопротивление принятию округлой формы.

Охлаждающая жидкость - 0,03 % раствор двухромовокислого натрия NaCr2О3 [61].

Основной параметр машины - диаметр бака - 2000-2200 мм ГОСТ 11964-89 [8] и частота вращения грануляторов 600-1000

, частота вращения крыльчатки 30
[61].

Л.А. Мудрук и С.С. Затуловский предложили технологию, позволяю­щую получать литую дробь как для нужд литейного производства, так и для других областей применения, основанную на высокопроизводительном ме­тоде диспергирования струи жидкого металла потоком энергоносителя (воз­духа, воды) с последующей сфероидизацией распыленных частиц в воздуш­ной среде и окончательным затвердеванием в водяной ванне. Извлечённая дробь подаётся в сушилку, а дальше на вибросито [33].

Характеристика получаемой дроби

Гранулометрический состав, мм 0,5…5,0

Фактор формы 0,85...1,00

Плотность, г/см3 6,5...7,2

Твёрдость, HRC 25...60

Циклическая стойкость, циклы 400

Содержание кислорода, % < 0,05

Насыпная плотность, г/см3 1...5

Магнитная проницаемость, Гс/э 1 ...9

Давление распыливающего воздуха < 0,4 МПа при разовом распылении 0,05...7,00т[33].

В дальнейшем В.И. Багрянцевым и А.В. Чевалковым было предложено интенсифицировать процессы распыления расплавов и их охлаждения при использовании закрученных газовых потоков [62].

В отличие от прямоструйных форсунок существенное влияние на структуру вращающейся газовой струи на выходе из форсунки оказывает обратный поток со стороны замкнутого объёма по оси к выходному отверстию форсунки, которая увеличивает угол раскрытия газовой струи и резко сокращает её длину. На образование обратного потока оказывает влияние интен­сивность закрутки, наличие центрального тела в приосевой зоне форсунки. Изменяя величину интенсивности и расположение обратного потока, можно изменять механизм распада струи расплава, регулируя фракционный состав порошка (гранул), структуру факела распыления. В закрученном газовом по­токе распад струи расплава начинается в низкоскоростной приосевой зоне за счёт разрежения воздействия прямого или обратного газового потока. На этом участке дробление расплава подобно его распылению под действием центробежных сил [62].

Процесс распыления сопровождается интенсивным охлаждением ка­пель расплава. В период начала дробления капли охлаждаются в условиях несформировавшегося теплового пограничного слоя и процесс имеет нестационарный характер.

Окончательное охлаждение затвердевших капель может производить­ся: в свободном полёте, излучением и конвекцией, что требует увеличения габаритных размеров охладителя; в попутном газовом потоке; попутным, вращающимся, соосным газовым потоком; встречными обычными и закрученными газовыми струями; в водяной ванне; различными комбинациями этих схем [62].

Выводы и задачи исследования

По результатам проведенного обзора научной литературы поставлена цель диссертационной работы: разработка технологии применения гранулированного алюминия при раскислении стали во время выпуска жидкого металла из сталеплавильного агрегата для снижения расхода дорогостоящего элемента и повышения качества производимой продукции.

Для достижения заданной цели в работе поставлены следующие основные задачи:

- исследование влияния различных технологических факторов на ход процесса раскисления стали гранулированным алюминием, поиск их оптимальных значений и разработка рекомендаций по условиям проведения процесса раскисления стали;

- исследование усвоения алюминия при различных технологиях рас­кисления стали в момент выпуска металла из плавильного агрегата;

- исследование влияния фракционного состава присаживаемых эле­ментов на процесс взаимодействия раскислителя с кислородом расплава;

- исследование и разработка технологии производства гранулирован­ного алюминия фракции 7-15 мм;

- производственные испытания и практическое применение гранули­рованного алюминия при раскислении конструкционной высококаче­ственной стали.

2. Разработка технологии раскисления стали с целью получения остаточной концентрации алюминия 0,03-0,04%.

2.1 Методика работы

Исследованы и произведены испытания по практическому применению гранулированного алюминия при производстве конструкционной высококачественной стали.

Выплавлена сталь с содержанием Si < 0,03 % и S < 0,015 % при содержании C и Мn 0,10-0,20 % и 0,6-1,0 %. Проведено 80 плавок стали SS 400 по JIS 63101.

При обработке стали в ковше удаление S возможно только из раскисленного металла. Учитывая, что полуспокойные стали раскисляются алюми­нием, кремний, обладающий меньшим сродством к кислороду, окисляется незначительно, что может привести к содержанию его выше требуемого [63, 64].

Шихтовые материалы и их подготовка.

Жидкий чугун, поступающий в миксерное отделение цеха, должен соответствовать требованиям ТУ 14-106-260-97, ТУ 14-106-554-98 и подаваться из доменных цехов в предварительно очищенных чугуновозных ковшах.

Массовые доли элементов в поступающем чугуне приведены в табл. 2.

Таблица 2

Номер ТУ Массовая доля элементов, %
Кремний Сера, не более Фосфор, не более

ТУ 14-106-260-97

0,4-1,0 0,025 0,15
0,4-1,0 0,020 0,15
ТУ 14-106-554-98 0,4-1,0 0,012 0,15

Уровень жидкого чугуна в чугуновозных ковшах, поступающих из доменных цехов, должен быть на 200-250 мм ниже верхней кромки ковша, но не менее 2/3 высоты наполнения ковша [65].

При наличии толщины слоя шлака в чугуновозных ковшах более 250 мм производят скачивание шлака.

Чугун переливают в заливочный ковш после получения результатов химического анализа проб, отобранных в доменном цехе при выпуске чугуна. После наполнения заливочного ковша чугуном производят взвешивание чугуна, отбирают пробу в соответствии с требованиями ГОСТ 7565-81 и отправляют в экспресс-лабораторию.

Температуру чугуна в заливочном ковше измеряют термоэлектрическим преобразователем после наполнения ковша.

Загружаемый в конвертер металлический лом должен иметь габаритные размеры не более: пакеты – 2000

1000
700 мм, конструкции - 2000
1000
700 мм, длинномерные изделия (трубы, рельсы, балки, сортовой прокат) - 3000 мм, обрезь слябов и скрапа - 1000 мм [65, 66].

Количество обрези слябов должно быть не более 15 % от массы твёрдой металлической шихты, подаваемой на плавку.

Не допускается в металлошихте наличие стружки (кроме пакетирован­ной), цветных металлов, окалины, взрывоопасных и вредных примесей (взрывчатых веществ, закрытых сосудов, пакетов со льдом, маслом).

Металлический лом первого сорта, металлизованные окатыши и брикеты же­лезной руды (ГБЖ) отдельно складируют в шихтовых открылках и используют при производстве стали:

- с массовой долей серы не более 0,018 % без обработки ТШС и не более 0,010 % с обработкой ТШС;

- с массовыми долями хрома, никеля, меди в сумме не более 0,07 %;

- при производстве низкокремнистой и низкосернистой стали;

- при производстве низкоуглеродистой качественной стали по ГОСТ 9045.

Металлический лом третьего сорта отдельно складируют в шихтовых открыл­ках и используют целевым назначением.

Металлошихту, поступившую из копрового цеха с пометкой в сопроводительном документе "трансформаторная сталь" отдельно складируют в шихтовых открылках и используют целевым назначением.

Перед подачей в загрузочный пролёт металлошихту в лотках взвешива­ют.

Охладители и шлакообразующие материалы, поступающие в конвертер­ное отделение должны соответствовать следующей нормативной документа­ции: железорудные окатыши - ТУ 0722-031-00186803-99; агломерат высоко­основный - ТУ 14-106-563-99; известь металлургическая - ТУ 14-106-506-96; доломит металлургический - ТУ 14-106-566-99; известняк - ТУ 0750-005-00186855-97; доломит сырой марки ДО-20 - ТУ 0753-009-00186861-98; твёр­дый конвертерный шлак с размером зёрен от 10 до 70 мм - ГОСТ 3344-83; плавиковый шпат - ГОСТ 29220-91. Охладители и шлакообразующие материалы должны быть воздушно сухими.

Размер кусков плавикового шпата должен быть от 10 до 80 мм. Массовая доля фракций менее 10 мм и более 80 мм должна составлять не более 10 % каждой [66].

В качестве основных шлакообразующих материалов применяют известь металлургическую марки ИС-1 первого сорта (сумма массовых долей окси­дов кальция и магния не менее 92 %, массовая доля потерь при прокаливании - не более 5,0 %) и доломит металлургический марки ДС (массовая доля ок­сида магния не менее 30 %, массовая доля потерь при прокаливании - не бо­лее 5,0 %) [66].

Приём извести и доломита металлургического производят с учётом обеспечения длительности их хранения в бункерах конвертерного цеха не более 24 часов.

Садка конвертера состоит из жидкого чугуна и твёрдой металлошихты. Масса садки - 360 т, в том числе: чугун 250-310 т; твёрдая металлическая шихта 110-50 т [65].