Смекни!
smekni.com

Расчет и проектирование привода (стр. 4 из 6)

 = 0.025 x aw + 1 = 0.025 x 315 + 1 = 8,875 мм

Округляя в большую сторону, получим  = 9 мм.

1 = 0.02 x aw + 1 = 0.02 x 315 + 1 = 7,3 мм

Так как должно быть 1  8.0 мм, принимаем 1 = 8.0 мм.

Толщина верхнего пояса (фланца) корпуса: b = 1.5 x  = 1.5 x 9 = 13,5 мм. Округляя в большую сторону, получим b = 14 мм.

Толщина нижнего пояса (фланца) крышки корпуса: b1 = 1.5 x 1 = 1.5 x 8 = 12 мм.

Толщина нижнего пояса корпуса:

без бобышки: p = 2.35 x  = 2.35 x 9 = 21,15 мм.

Округляя в большую сторону, получим p = 22 мм.

при наличии бобышки: p1 = 1.5 x  = 1.5 x 9 = 13,5 мм.

Округляя в большую сторону, получим p1 = 14 мм.

p2 = (2,25...2,75) x  = 2.65 x 9 = 23,85 мм.

Округляя в большую сторону, получим p2 = 24 мм.

Толщина рёбер основания корпуса: m = (0,85...1) x  = 0.9 x 9 = 8,1 мм. Округляя в большую сторону, получим m = 9 мм.

Толщина рёбер крышки: m1 = (0,85...1) x 1 = 0.9 x 8 = 7,2 мм. Округляя в большую сторону, получим m1 = 8 мм.

Диаметр фундаментных болтов (их число  4):

d1 = (0,03...0,036) x aw (тихоходная ступень) + 12 =

(0,03...0,036) x 315 + 12 = 21,45...23,34 мм.

Принимаем d1 = 24 мм.

Диаметр болтов:

у подшипников:

d2 = (0,7...0,75) x d1 = (0,7...0,75) x 24 = 16,8...18 мм. Принимаем d2 = 16 мм.

соединяющих основание корпуса с крышкой:

d3 = (0,5...0,6) x d1 = (0,5...0,6) x 24 = 12...14,4 мм. Принимаем d3 = 16 мм.

Размеры, определяющие положение болтов d2 (см. рис. 10.18[1]):

e  (1...1,2) x d2 = (1...1.2) x 16 = 16...19,2 = 17 мм;

q  0,5 x d2 + d4 = 0,5 x 16 + 5 = 13 мм;

где крепление крышки подшипника d4 = 5 мм.

Высоту бобышки hб под болт d2 выбирают конструктивно так, чтобы образовалась опорная поверхность под головку болта и гайку. Желательно у всех бобышек иметь одинаковую высоту hб.

9. Расчёт реакций в опорах

9.1 1-й вал

Силы, действующие на вал и углы контактов элементов передач:

Fx1 = -2966,63 H

Fx3 = -1361,253 H

Fy3 = 3740,013 H

Из условия равенства суммы моментов сил относительно 1-й опоры:

Rx2 = ((-Fx1 * (L1 + L2 + L3)) - Fx2 * L3) / (L2 + L3)

= ((-(-2966,63) * (105 + 80 + 80)) - (-1361,253) * 80) / (80 + 80)

= 5594,107 H

Ry2 = ((-Fy1 * (L1 + L2 + L3)) - Fy3 * L3) / (L2 + L3)

= ((-0 * (105 + 80 + 80)) - 3740,013 * 80) / (80 + 80)

= -1870,007 H

Из условия равенства суммы сил относительно осей X и Y:

Rx4 = (-Fx1) - Rx2 - Fx2

= (-(-2966,63)) - 5594,107 - (-1361,253)

= -1266,224 H

Ry4 = (-Fy1) - Rx2 - Fy3

= (-0) - (-1870,007) - 3740,013

= -1870,006 H


Суммарные реакции опор:

R1 = (Rx12 + Ry12)1/2 = (5594,1072 + -1870,0072)1/2 = 5898,386 H;

R2 = (Rx22 + Ry22)1/2 = (-1266,2242 + -1870,0062)1/2 = 2258,373 H;

9.2 2-й вал

Силы, действующие на вал и углы контактов элементов передач:

Fx3 = 1361,253 H

Fy3 = -3740,013 H

Из условия равенства суммы моментов сил относительно 1-й опоры:

Rx2 = (-Fx2 * L3) / (L2 + L3)

= (-1361,253 * 80) / (80 + 80)

= -680,626 H

Ry2 = (-Fy3 * L3) / (L2 + L3)

= (-(-3740,013) * 80) / (80 + 80)

= 1870,006 H

Из условия равенства суммы сил относительно осей X и Y:

Rx4 = (-Rx2) - Fx2

= (-(-680,626)) - 1361,253

= -680,626 H

Ry4 = (-Rx2) - Fy3

= (-1870,006) - (-3740,013)

= 1870,006 H


Суммарные реакции опор:

R1 = (Rx12 + Ry12)1/2 = (-680,6262 + 1870,0062)1/2 = 1990,019 H;

R2 = (Rx22 + Ry22)1/2 = (-680,6262 + 1870,0062)1/2 = 1990,019 H;

10. Построение эпюр моментов валов

10.1 Расчёт моментов 1-го вала

1-е сечение

Mx = 0 Н x мм

My = 0 Н x мм

M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм

2-е сечение

Mx = 0 Н x мм

My = Fx1 * L1 =

(-2966,63) * 105 = -311496,15 H x мм

M = (Mx12 + My12)1/2 = (02 + -311496,152)1/2 = 311496,15 H x мм

3-е сечение

Mx = Fy1 * (L1 + L2) + Rx2 * L2 =

0 * (105 + 80) + (-1870,007) * 80 = -149600,52 H x мм

My = Fx1 * (L1 + L2) + Rx2 * L2 =

(-2966,63) * (105 + 80) + 5594,107 * 80 = -101297,955 H x мм

M = (Mx12 + My12)1/2 = (-149600,522 + -101297,9552)1/2 = 180669,841 H x мм


4-е сечение

Mx = 0 Н x мм

My = 0 Н x мм

M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм

10.2 Эпюры моментов 1-го вала

My, Hxмм
MS = (Mx2 + My2)1/2, Hxмм
Mкр(max) = Ткр, Hxмм

10.3 Расчёт моментов 2-го вала

1 - е сечение

Mx = 0 Н x мм

My = 0 Н x мм

M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм

2 - е сечение

Mx = 0 Н x мм

My = 0 Н x мм

M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм

3 - е сечение

Mx = Rx2 * L2 =

1870,006 * 80 = 149600,52 H x мм

My = Rx2 * L2 =

(-680,626) * 80 = -54450,12 H x мм

M = (Mx12 + My12)1/2 = (149600,522 + -54450,122)1/2 = 159201,543 H x мм

4 - е сечение

Mx = 0 Н x мм

My = 0 Н x мм

M = (Mx12 + My12)1/2 = (02 + 02)1/2 = 0 H x мм

10.4 Эпюры моментов 2-го вала


11. Проверка долговечности подшипников

11.1 1-й вал

Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 409 тяжелой серии со следующими параметрами:

d = 45 мм - диаметр вала (внутренний посадочный диаметр подшипника);

D = 120 мм - внешний диаметр подшипника;

C = 76,1 кН - динамическая грузоподъёмность;

Co = 45,5 кН - статическая грузоподъёмность.

Радиальные нагрузки на опоры:

Pr1 = 5898,386 H;

Pr2 = 2258,373 H.

Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1.

Эквивалентная нагрузка вычисляется по формуле:

Рэ = (Х x V x Pr1 + Y x Pa) x Кбx Кт,

где - Pr1 = 5898,386 H - радиальная нагрузка; Pa = Fa = 0 H - осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,4 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]).

Отношение Fa / Co = 0 / 45500 = 0; этой величине (по табл. 9.18[1]) соответствует e = 0.

Отношение Fa / (Pr1x V) = 0 / (5898,386 x 1) = 0  e; тогда по табл. 9.18[1]: X = 1; Y = 0.

Тогда: Pэ = (1 x 1 x 5898,386 + 0 x 0) x 1,4 x 1 = 8257,74 H.

Расчётная долговечность, млн. об. (формула 9.1[1]):

L = (C / Рэ)3 = (76100 / 8257,74)3 = 782,655 млн. об.

Расчётная долговечность, ч.:

Lh = L x 106 / (60 x n1) = 782,655 x 106 / (60 x 457,031) = 28541,281 ч,

что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n1 = 457,031 об/мин - частота вращения вала.

11.2 2-й вал

Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 314 средней серии со следующими параметрами:

d = 70 мм - диаметр вала (внутренний посадочный диаметр подшипника);

D = 150 мм - внешний диаметр подшипника;

C = 104 кН - динамическая грузоподъёмность;

Co = 63 кН - статическая грузоподъёмность.

Радиальные нагрузки на опоры:

Pr1 = 1990,019 H;

Pr2 = 1990,019 H.

Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2.

Эквивалентная нагрузка вычисляется по формуле:

Рэ = (Х x V x Pr2 + Y x Pa) x Кбx Кт,

где - Pr2 = 1990,019 H - радиальная нагрузка; Pa = Fa = 0 H - осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,4 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]).

Отношение Fa / Co = 0 / 63000 = 0; этой величине (по табл. 9.18[1]) соответствует e = 0.

Отношение Fa / (Pr2x V) = 0 / (1990,019 x 1) = 0  e; тогда по табл. 9.18[1]: X = 1; Y = 0.

Тогда: Pэ = (1 x 1 x 1990,019 + 0 x 0) x 1,4 x 1 = 2786,027 H.

Расчётная долговечность, млн. об. (формула 9.1[1]):

L = (C / Рэ)3 = (104000 / 2786,027)3 = 52016,851 млн. об.

Расчётная долговечность, ч.:

Lh = L x 106 / (60 x n2) = 52016,851 x 106 / (60 x 81,613) = 10622664,486 ч,

что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n2 = 81,613 об/мин - частота вращения вала.


Подшипники

Валы Подшипники
1-я опора 2-я опора
Наименование d, мм D, мм Наименование d, мм D, мм
1-й вал шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 409тяжелой серии 45 120 шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 409тяжелой серии 45 120
2-й вал шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 314средней серии 70 150 шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 314средней серии 70 150

12 Уточненный расчёт валов

12.1 Расчёт 1-го вала

Крутящий момент на валу Tкр. = 176715,629 Hxмм.

Для данного вала выбран материал: сталь 45. Для этого материала:

- предел прочности b = 780 МПа;

- предел выносливости стали при симметричном цикле изгиба

-1 = 0,43 x b = 0,43 x 780 = 335,4 МПа;

- предел выносливости стали при симметричном цикле кручения

-1 = 0,58 x -1 = 0,58 x 335,4 = 194,532 МПа.

2 - е сечение.

Диаметр вала в данном сечении D = 45 мм. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7[1]).

Коэффициент запаса прочности по нормальным напряжениям:

S = -1 / ((k / (x )) x v + x m) , где:

- амплитуда цикла нормальных напряжений:

v = Mизг. / Wнетто = 311496,15 / 8946,176 = 34,819 МПа,

здесь

Wнетто =  x D3 / 32 =

3,142 x 453 / 32 = 8946,176 мм3