Смекни!
smekni.com

Силовой расчёт механизмов (стр. 2 из 5)

Определяем масштаб диаграммы приведенных моментов сил сопротивления.

, где

– значение из таблицы 2;

– произвольно принимаем 100 мм.

1.6 Вычислим для полученных положений механизма, значения приведенных моментов инерции звеньев и строим диаграмму приведенного момента инерции всех звеньев

в масштабе:

мм

Приведенный момент инерции

определим из условия равенства его кинетической энергии, суммарной энергии всех подвижных звеньев механизма по методике [1] стр. 9;10;12 используя формулы (17;18;19) можно записать формулу
для нашего случая:

;

Вычислим

для всех положений и результаты заносим в таблицу 3:

Приведенный момент инерции.


Таблица 3.

Положение механизма

,

кг·м2

0

0

0

0,67

0,4489

1

1

0,0567

1

0,6

0,36

0,82

0,6724

0,7

0,49

0,129

2

1

1

1

1

0

0

0,2475

3

0,85

0,7225

0,9

0,81

0,7

0,49

0,19

4

0

0

0,67

0,4489

1

1

0,0567

5

0,85

0,7225

0,9

0,81

0,7

0,49

0,19

6

1

1

1

1

0

0

0,2475

7

0,6

0,36

0,82

0,6724

0,7

0,49

0,129

1.7 Строим диаграмму избыточных работ

путем интегрирования кривой
.

Масштаб оси ординат диаграммы

вычисляем по формуле:

Дж/мм

1.8 Строим диаграмму среднего приведенного момента на тех же осях и в том же масштабе

.

Величину среднего приведенного момента можно определить графическим дифференцированием графика

.

1.9 Используя уравнение

Строим диаграмму изменения запаса кинетической энергии

.

Определим масштаб оси ординат этой диаграммы:

,

где

k – коэффициент пропорциональности, в нашем случае k=1;

Дж/мм.

1.10 Определяем момент инерции дополнительной массы (маховика) обеспечивающий вращение ведущего звена с заданным коэффициентом неравномерности =1/55 и закон его движения.

Динамический синтез механизма проводим методом Виттенбауэра.

Метод Виттенбауэра.

Строим диаграмму «Энергия-масса» путем совместного графического решения двух графиков

и
, исключая параметр .

Для удобства построения диаграммы

повернем на угол 90°.

На диаграмме

и Е отмечаем соответственно точки 1' и проводим через них горизонтальную и вертикальную линии, на пересечении которой отмечаем точку 1, повторив процедуру получим остальные точки. Полученные точки соединяем плавной линией, строим диаграмму «Энергия-масса».

1.11 Проведем под углами max и min касательные к кривой «Энергия-масса». Точки пересечения этих касательных с осью ординат обозначаем А и В. Значение tg этих углов вычислим по формулам:

1°27'

1°24'

рад/сек

1.12 Определяем момент инерции маховика, обеспечивающий вращения звена приведения с заданным коэффициентом =0,022.

,

где АВ отрезок на оси ординат кривой, «Энергия-масса».

кг м2

1.13 Определим значение угловой скорости звена приведения во всех положениях кривошипа, для этого воспользуемся диаграммой «Энергия-масса».

Расчет угловой скорости ведем по формуле:

,

где KL – ордината диаграммы «Энергия-масса» в требуемом положении;

BL – абсцисса диаграммы «Энергия-масса» в требуемом положении.

Вычислим угловую скорость для каждого положения:

Вычислим изменение угловой скорости для каждого положения:

Результаты вычислений угловой скорости заносим в таблицу 4.

Исходные данные и результаты вычислений к-1

Таблица 4.

Положения маховика

KL

к-1

∆к

0

40

29,82

0,2

1

46

29,88

0,26

2

42

29,58

-0,03

3

18

29,54

-0,077

4

1

29,354

-0,266

5

12

29,47

-0,149

6

24

29,60

-0,02

7

32

29,71

0,09

8

40

29,82

0,2

По полученным значениям строим график изменения угловой скорости ∆wi= ∆wi(1), относительно прямой, совпадающей со значением угловой скорости звена приведения: