Смекни!
smekni.com

Силовой расчёт механизмов (стр. 4 из 5)


2.6 Производим силовой расчет входного звена

К звену приложены сила реакции

в точке А, сила тяжести G1 в точке 0, неизвестная по величине и направлению реакции R01 в точке 0 и неизвестна по величине уравновешивающая сила Рур в точке А.

Силовой расчет ведущего звена сводится к определению уравновешивающей силы, которую определяем из уравнения моментов.

М0 = 0 (сумма моментов относительно точки 0 должна быть равна 0)

Рассчитаем Рур для 3-ого положения:

Таблица 6. Значения сил

Положение механизма

3

14473

2698

16700

11000

Реакция R01 стойки на звено определим в результате графического решения векторного уравнения равновесия сил:

2.7 Методом рычага Жуковского определим уравновешивающую силу. Рычаг Жуковского представляет собой план скоростей, повернутый на 90° вокруг своей оси, в соответствующих точках, которого, приложены все внешние силы инерции, а так же моменты, действующие на звенья механизма.

Записываем векторное уравнение всех сил:

Рычаг Жуковского будет в равновесии, если к нему приложить уравновешивающую силу и моменты.

2.8 Сравним полученные значения Рур, рассчитанные по методу плана сил и методом рычага Жуковского.

Вывод: Проведя силовой анализ механизма, определили реакцию опор, нашли уравновешивающую силу, выяснили, что на данный механизм влияют силы инерции.


РАЗДЕЛ III

Проектирование эвольвентного зубчатого зацепления

Задачами проектирования является выбор исходных данных, расчет геометрических параметров, контрольных размеров, качественных показателей и кинематических параметров эвольвентного зубчатого зацепления. Исходные данные для расчета:

Наименование параметра

Обозначение

Значение

Число зубьев шестерни

14

Число зубьев колеса

27

Модуль

m

2,5 мм

Угол наклона

Угол профиля

20°

Коэффициент высоты головки

1

Коэффициент граничной высоты

2

Коэффициент радиального зазора

с*

0,25

Коэффициент смещения у шестерни

0,826

Коэффициент смещения у колеса

0,399

3.1 Рассчитываем передаточное число зубчатых колес:

Выбираем коэффициент смещения по таблице 4,5,6 стр. 67,68 [5] по передаточному отношению х1 и х2.

Определяем коэффициент суммы смещения:

Определяем угол зацепления:

26°38'
Определим межосевое расстояние:

мм

3.2 Рассчитываем диаметр зубчатых колес.

Определяем делительный диаметр шестерни и колеса:

мм

мм

Определяем начальный диаметр шестерни и колеса:

мм

мм

Определяем коэффициент воспринимаемого смешения:

мм

Определим делительное межосевое расстояние:

мм

Определяем коэффициент уравнительного смещения:

мм

Определяем диаметр вершины зубьев шестерни и колеса:

мм;

мм

Определяем диаметр впадины шестерни и колеса:

мм

мм

Проверка вычислений межосевого расстояния:

мм;

мм.

3.3 Рассчитываем размеры для контроля взаимного положения разноименных профилей зубьев.

Определяем нормальную толщину шестерни и колеса:


мм;

мм.

3.4 Рассчитываем размеры для контроля номинальной поверхности зуба.

Определяем основной диаметр шестерни и колеса:

мм

мм

Определяем угол профиля зуба в точке на окружности вершин шестерни и колеса:

;

40°30'

30°30'

Определяем радиус кривизны активного профиля зуба в нижней точке шестерни и колеса:

мм;

мм.

3.5 Рассчитываем размеры для контроля взаимного положения одноименных профилей зубьев.

Определяем шаг зацепления:

мм.

Определяем делительный шаг окружности:

мм.

Определяем осевой шаг:

3.6 Проверим качество зацепления по геометрическим показателям.

Определим коэффициент наименьшего смещения шестерни и колеса:

.

Проверим отсутствия интерференции зубьев.

Определим радиус кривизны в граничной точке профиля зуба шестерни и колес:

Определяем коэффициент торцевого перекрытия:

3.7 Расчет кинематических параметров

Определяем удельное скольжение профиля зуба в заданной точке шестерни и колеса: