Смекни!
smekni.com

Разработка следящей системы промышленного робота (стр. 5 из 5)


Рисунок 5.1 – Функция нелинейности

Нелинейный элемент имеет характеристику с насыщением, без зоны нечувствительности. Угол наклона характеристики должен быть 45°, т.к. нелинейный элемент повторяет входной сигнал до достижения значения выхода dр.огр= А = 0,2°. Рассмотрим схему, представленную на рисунке 5.2:

Необходимо установить, возможно ли возникновение автоколебаний в такой системе. Данную задачу можно решить с помощью метода гармонического баланса, однако для этого исходную схему необходимо привести к виду, представленному на рисунке 5.3:


Рисунок 5.3 – Структурная схема


По нелинейному элементу, для применения метода гармонического баланса, получают его эквивалентную передаточную функцию, которая получается с помощью метода гармонической линеаризации с учетом гипотезы фильтрации низких частот, то есть получим схему, представленную на рисунке 5.4:


Рисунок 5.4 – Структурная схема с эквивалентной передаточной функцией

На рисунке 5.4 Wлч(s) = W2(s)* W3(s)* WДВ(s)* (W8(s)+W1(s)* W7(s)), а Wэкв(s) – эквивалентная передаточная функция. Для нахождения этой передаточной функции воспользуемся методом гармонического баланса. Суть этого метода заключается в том, что нелинейное выражение y = F(x), в данном случае рассматривается кривая не имеющая гистерезис, заменяется выражением, которое с точностью до высших гармоник аналогично линейному:

у= q(А)x + высшие гармоники (40)

То есть криволинейная или ломанная характеристика y = F(x) с точностью до высших гармоник заменяется прямолинейной, тангенс угла наклона которой q зависит от размера амплитуды колебаний А.

Для рассматриваемого случая:

, (41)

где А – амплитуда сигнала, причем А > а/k;

k – тангенс угла наклона нелинейности, в рассматриваемом случае k=1.

Передаточная функция замкнутой системы, изображенной на рисунке 5.4, имеет следующий вид:

(42)

Отсюда, приравняв знаменатель к нулю, получим:

(43)

Произведя замену s на , получим уравнение Гольдфарба:

(43’)

Данное уравнение решается графически и его решение позволяет определить наличие в системе автоколебаний.

Передаточная функция линейной части:

Заменив s на и выделив мнимую и реальную части, построим в одной координатной плоскости годограф линейной части системы и обратную характеристику нелинейного звена

Так как не существует пересечение годографа с обратной характеристикой нелинейного звена, описываемой уравнением (- 1/q(A)), то можно утверждать, что автоколебания в системе нет. Значит определять частоту и амплитуду автоколебаний не имеет смысла.

6 АНАЛИЗ АБСОЛЮТНОЙ УСТОЙЧИВОСТИ

В исследовании САУ ставится задача определить устойчивость по критерию Попова. Критерий Попова является достаточным: для абсолютной устойчивости нелинейной САУ достаточно, чтобы линейная часть системы была асимптотически устойчивой, и для любых частот выполнялось неравенство Попова:

(24)

q - любое действительное число,

k – значение k-сектора – тангенс угла наклона прямой задающей нелинейность. k = tg 45° = 1

Достаточно, чтобы существовало такое конечное действительное число q, что для всех частот w³0, выполнялось бы это неравенство.

Критерий Попова решается геометрически:

Для этого вводим понятие модифицированного годографа W*(jw)= U*(w)+j V*(w), у которого действительная часть U*(w)=U(w), а мнимая часть V*(w)=wV(w), тогда условие Попова примет вид:

Очевидно, что равенство

представляет собой уравнение прямой на плоскости W*(jw)

Графическая интерпретация критерия Попова: для установления устойчивости нелинейной системы достаточно подобрать такую прямую на плоскости W*(jw), проходящую через точку

, что вся кривая W*(jw) лежала справа от этой прямой.

Рассмотрим передаточную функцию линейной части:

В данном случае линейная часть не является асимптотически устойчивой, то есть имеет нулевые корни, а следовательно в классической интерпретации критерий Попова применить нельзя. И поэтому в данном случае необходимо применить обобщение критерия Попова, а именно мы должны посмотреть выполняются ли условия при нулевых полюсах. Для астатизма 2 порядка, в этом случае абсолютная устойчивость определяется если выполняются придельная устойчивость. У нас два нулевых полюса, это видно из многочлена записанного в знаменателе, поэтому проверяем такие условия:

, при малых ω.

Эти условия выполняются, как видно из решения, следовательно можно сделать вывод, что система абсолютно устойчива.

Построим модифицированный годограф, т.е. выделим мнимую и реальную часть, заменив s = jw , и для получения модифицированного годографа мнимую часть умножим на w.

.

Рисунок 6.1 - Модифицированный годограф

Так как можно провести прямую через точку

слева от характеристики, то нелинейная система абсолютно устойчива.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе произведен расчет и анализ САУ следящей системы промышленного робота. Получена математическая модель исполнительного двигателя, произведена линеаризация этой модели, математические модели остальных звеньев изначально известны. Составлена структурная схема САУ. Для улучшения динамических характеристик была введена и рассчитана коррекция в сервоприводе. Разработана электрическая схема корректирующего устройства.

Произведен анализ влияния нелинейности на динамические свойства САУ. В ходе анализа системы была введена нелинейность в сервоприводе. Исходя из метода гармонического баланса выяснили, что в системе не могут присутствовать автоколебания. Также был проведен анализ влияния нелинейного элемента на абсолютную устойчивость системы. Проведя анализ САУ по критерию Попова, получили результат, что система абсолютно устойчива.

В данной курсовой работе произведено описание и анализ системы автоматического управления следящей системы промышленного робота. Выведена математическая модель и получена структурная схема САУ. Для улучшения динамических характеристик была введена коррекция в сервоприводе. Исходя из метода гармонического баланса выяснили, что в системе не могут присутствовать автоколебания. Необходимо было повести анализ влияния нелинейного элемента на абсолютную устойчивость системы. Проведя анализ САУ по критерию Попова, получили результат, что система абсолютно устойчивая.


БИБЛИОГРАФИЯ

1. Методические указания к выполнению курсового проекта по дисциплине «Теория автоматического управления»/Сост. Т.А.Грушун. – Севастополь: Издательство СевНТУ, 2003. -16с.

2. В.А. Бесекерский «Теория систем автоматического регулирования», Наука, М.: 1979г.-450с

3. В. В. Солодовников «Теория автоматического управления», книга вторая, М.: 1967г.-586с.

4. А.А.Воронов «Теория автоматического управления» - М., «Высшая школа»,1977г. - 303с.

5. И.М.Макаров «Управление робототехническими системами и гибкими автоматизированными производствами» -М., Высшая школа, 1986г. -159с.