Смекни!
smekni.com

Разработка следящей системы промышленного робота (стр. 1 из 5)

Министерство образования и науки Украины

Севастопольский национальный технический университет

Кафедра ТК

Пояснительная записка

к курсовому проекту

«Разработка следящей системы промышленного робота»

по дисциплине

«Теория автоматического управления»

Исполнитель: ст.гр. А-44д.

Анищенко А.А.

Руководитель: Грушун Т.А.

Севастополь

2004


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1 КРАТКОЕ ОПИСАНИЕ САУ

Цель работы

Вариант задания

1.1 Краткое описание целей и принципов работы исследуемой САУ

1.2 Функциональная схема следящей системы промышленного робота

2 МАТЕМАТИЧЕСКИЕ МОДЕЛИ ОТДЕЛЬНЫХ ЗВЕНЬЕВ СИСТЕМЫ

3 ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ КОРРЕКТИРУЮЩЕГО ЗВЕНА

4 Д – РАЗБИЕНИЕ

5 АНАЛИЗ ВЛИЯНИЯ НЕЛИНЕЙНОСТИ НА СВОЙСТВА САУ

6 АНАЛИЗ АБСОЛЮТНОЙ УСТОЙЧИВОСТИ

ЗАКЛЮЧЕНИЕ

БИБЛИОГРАФИЯ

Приложение А

Приложение Б

Приложение В


ВВЕДЕНИЕ

При проектировании САУ обычно задаются необходимые для нормальной работы показатели качества регулирования при некотором типовом воздействии. При этом решается как задача анализа, так и задача синтеза. Задача синтеза противоположна задаче анализа. Если при анализе структура и параметры заданы, а ищут или рассматривают поведение системы в заданных условиях, то в задаче синтеза задание и цель меняются местами.

Характер задания может быть различным. Существуют методы синтеза, при которых задается кривая переходного процесса. Однако реализация систем с переходным процессом, заданным чрезмерно жестко, как правило, оказывается весьма трудной: система получается неоправданно сложной и зачастую нереализуемой, в то время как небольшое отступление от заданной кривой может привести к существенному упрощению структуры. Поэтому более распространен метод задания более грубых качественных оценок, таких, как перерегулирование и время регулирования или же показатель колебательности, при которых сохраняется большая свобода в выборе детальной формы кривой переходного процесса. Задание кривой переходного процесса не исключено: им обычно пользуются при синтезе систем сложной структуры, когда требуется регулирование нескольких координат.

Задача синтеза обычно имеет множество решений, и выбор из этого множества наиболее рационального решения не может быть сделан только на основании математических расчетов. Это больше инженерная, чем математическая задача. Чаще всего задается ряд элементов системы управления (объект регулирования, двигатели, усилители и т. п., поскольку при построении систем разумно максимально использовать широкую номенклатуру элементов автоматики, выпускаемых промышленностью). Нередко выбор основных типовых звеньев предопределяет и основные черты структуры системы. Назовем совокупность заданных элементов неизменяемой частью системы, а ту часть, которую надо найти в процессе синтеза, — изменяемой частью системы или корректирующим устройством.

При инженерном синтезе САУ необходимо обеспечить, во-первых, требуемую точность и, во-вторых, желаемый характер переходных процессов.

Решение первой задачи в большинстве случаев сводится к определению требуемого общего коэффициента усиления системы и, в случае необходимости,— вида корректирующих средств, повышающих точность системы. Эта задача может решаться при помощи определения ошибок в типовых режимах на основе критериев точности. Решение этой задачи, как правило, не сопряжено с трудностями принципиального или вычислительного характера, так как критерии точности достаточно просты для их практического использования. В сложных случаях можно прибегать к помощи моделирования. Решение оказывается сравнительно простым вследствие необходимости установления значений относительно небольшого числа параметров. В простейшем случае необходимо найти только общий коэффициент усиления системы.

Решение второй задачи — обеспечение приемлемых переходных процессов — оказывается почти всегда более трудным вследствие большого числа варьируемых параметров и многозначности решения задачи демпфирования системы. Поэтому существующие инженерные методы часто ограничиваются решением только второй задачи, так как их авторы считают, что обеспечение требуемой точности может быть достаточно просто сделано на основании использования существующих критериев точности и совершенствования их практически не требуется.

В настоящее время для целей анализа и синтеза систем САУ широко используются ПЭВМ, позволяющие производить полное или частичное моделирование системы. При таком моделировании становится возможным наиболее полно исследовать влияние различных факторов нелинейности, зависимость параметров от времени и т. п.

Однако моделирование на ЭВМ не может заменить расчетных методов проектирования, которые во многих случаях позволяют исследовать вопрос в общем виде и среди многих решений найти оптимальное. Поэтому, несмотря на развитие и распространение машинных методов синтеза, теория должна располагать собственными методами, которые дополняли бы моделирование и являлись бы теоретической базой при отыскании оптимального решения.

В курсовом проекте будем рассматривать синтез последовательных корректирующих устройств (элементов) одноконтурных систем управления.

Основными вопросами, изучаемыми в курсовом проекте являются следующие:

- изучение целей и принципов работы САУ, основных алгоритмов их функционирования;

- построение различных видов математических моделей систем управления и их преобразование;

- анализ устойчивости и точности систем управления, построение временных и частотных динамических характеристик;

- синтез систем управления, выбор структуры и расчет параметров корректирующих устройств по заданным показателям точности управления и качества динамических характеристик.

При выполнении курсового проекта мы умело сочетали теоретические и численные методы, при расчетах широко использовались средства вычислительной техники. Выбор ЭВМ осуществляется на основе анализа эффективности их применения для решения конкретных задач исследования систем управления. При использовании ЭВМ мы самостоятельно выбирали пакеты прикладных программ, необходимых для анализа и расчета современных САУ.


1. КРАТКОЕ ОПИСАНИЕ САУ

Цель работы

Приобретение навыков анализа и синтеза систем автоматического управления (САУ) с применением ЭВМ.

Вариант задания

Вариант №10

Параметры передаточной функции:

W3 = КП = 4;

W4 = КЯ / ТЯS+1 = 3.0 / 0,03S +1;

W5 = КМ / JS = 0.04 / 0.005S;

W6 = Kω = 0.3 ;

W7 = 1 / iS = 1 / 60s;

W8 = KТГ = 0,07;

W9 = КОС = 1;

Показатели качества:

Время регулирования tp =0,1с;

Перерегулирования σ = 2.9%;

Показатель колебательности μ = 1,5;

Напиши про С

Параметры нелинейности:

А =0.2;

1.1 Краткое описание целей функционирования и принципов работы САУ

Роботы обеспечивают автоматическую работу комплексов технологического оборудования, координированное функционирования большого числа локальных систем управления. Необходимость в групповом управлении вызвана потребностями комплексной автоматизации многофункциональных участков технологического оборудования или сложных многосвязных технологических циклов промышленного производства.

В теории регулирования под управлением понимается автоматическое осуществление совокупности воздействий, направленных на поддержания управляемого объекта в соответствии с целью управления.

Робот как объект управления представляет собой сложную электромеханическую систему, состоящую из многозвенной механической конструкции (рабочего механизма), исполнительного устройства и электронной системы управления. Рабочий механизм непосредственно воздействует на объект или среду. Исполнительное устройство включает совокупность приводов с соответствующими датчиками обратной связи, усилительными, преобразующими и корректирующими элементами.

Задача управления роботом заключается в формировании управляющих воздействий для исполнительных двигателей, обработка которых гарантировала бы прохождение захватным устройством манипулятора заданной пространственной траектории с заданной точностью.

Многообразие систем управления роботами можно группировать по разным признакам, например: по составу и типу входящих устройств, показателям качества управления, вид траектории движения и т.п. Однако имеются достаточно общие признаки, которые принципиально характеризуют процесс управления роботом. Прежде всего это способ управления, определяемый в зависимости от степени участия оператора в управлении роботом. Другим столь же важным признаком является метод управления, который можно применить для дальнейшей классификации выделенных классов.

С появлением промышленных роботов проблемы группового управления приобрели ещё большее значение. Возникла необходимость обеспечения совместной работы оборудования с роботами или роботов с роботами. Наибольшая потребность в таком управлении выявилась при автоматизации сборочных процессов. Главная особенность систем автоматического управления роботами – отсутствие непосредственного участия человека в процессе управления. Функция оператора состоит лишь в обучении, запуске и последующем периодическом наблюдении за работой робота.

Развивая систему программного управления, удаётся преодолеть ограниченность роботов первого поколения, повысить гибкость управления и в значительной мере исключить необходимость приспосабливания технологической среды к роботу. Последующие поколения роботов имеют более широкие возможности благодаря разнообразным средствам очувствления, адаптации и технической имитации отдельных интеллектуальных функций, присущих человеку.