Диаграмма ускорения точки В строится графическиm дифференцированием диаграммы скоростей. Все построения аналогичны ранее описанным при графическом дифференцировании диаграммы перемещения.
Масштаб диаграммы ускорения равен:
2. СИЛОВОЙ РАСЧЕТ РЫЧАЖНОГО МЕХАНИЗМА
2.1. Определение сил сопротивления пуансона 5
На листе 2 построен план механизма для 4-го положения в масштабе 0,002 м/мм. В данном положении механизм совершает рабочий ход. Сила сопротивления пуансона 5 равна 0,48 от Рmax = 350,4 Н.
2.2. Определение сил тяжести и инерции звеньев
Произведем подсчет угловых скоростей и угловых ускорений звеньев механизма для седьмого положения:
Определение сил тяжести звеньев:
Определим силы инерции звеньев:
Производим замену силы инерции Fu3 и момента от пары сил инерции Ми2 кулисы 3 одной результирующей силой Fu3, равной Fu3, по величине и направлению, но приложенной в точке Т3 звена 5. Для этого вычисляем плечо Н.
2.3. Определение реакции в кинематических парах
Первым этапом будет определение реакций в звеньях 4, 5.Приложим к этим звеньям все известные силы. Действие звена 4 и стойки 6 заменяем неизвестными F4s и RG6.
Реакции F45 и RG6 определим построением силового многоугольника, решая векторное уравнение равновесия звеньев 4, 5:
G5+Rn6+Fui+F45+P = Q
По построению получаем:
Определяем реакцию R34 во внутренней паре со стороны звена 4 на кулису 3:
Вторым этапом будет определение реакций в звеньях 3, 2 и стойки 6.
Приложим к этим звеньям все известные силы. Действие звена 2 и стойки 6 заменяем неизвестными F23 и RG6.
Вначале определяем величину реакции F23из суммы моментов всех сил, действующих на звено 3 относительно точки Оз:
откуда:
Реакцию RG6 определим построением силового многоугольника, решая векторное уравнение равновесия звеньев 2, 3 и 6:
По построению получаем:
Прикладываем к звену 1 в точке А силу R12, а также пока еще не известную уравновешивающую силу Fy, направив ее предварительно в произвольную сторону перпендикулярно кривошипу ОА Вначале из уравнения моментов всех сил относительно точки О определяем Fy.
откуда
В шарнире О со стороны стойки 6 на звено 1 действует реакция R6-i, которую определяем построением многоугольника сил согласно векторному уравнению:
2.5. Определение уравновешивающей силы по методу Н.Е.
Строим для выбранного положения в произвольном масштабе повернутый на 90° план скоростей. В одноименные точки плана переносим все внешние силы (без масштаба), действующие на звенья механизма. Составляем уравнение моментов всех сил относительно полюса р плана скоростей, беря плечи сил по чертежу в мм.
Расхождение результатов определения уравновешивающей методом Жуковского и методом планов сил равно:
3.1. Построение диаграмм моментов и работ движущих сил, сил полезного сопротивления, приращения кинетической энергии машины
Определим приведенный момент сил сопротивления, для всех положений механизма
где Р5 — силы сопротивления пуансона 5 определяем по диаграмме приведенной в силовом расчете в зависимости от пути и мах силы сопротивления;
G - силы тяжести звеньев 3 и 5
— скорости точки приложения силы Р5 и G; = 13,61 рад/с — угловая скорость входного звона; — угол между векторами Р5 (G) и v;Угол а и си на такте холостого хода равны 180°, а на рабочем ходу равны 0°.
Таблица 3
Расчетная таблица определения приведенного момента сил сопротивления
№ положения | Сила сопротивления Р3/Рмах | Сила сопротивления Р5, Н | ||||
0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0,58 | 7,6 | 0,79 | 10,98 |
2 | 0 | 0 | 1,09 | 3,7 | 1,46 | 20,46 |
3 | 1 | 730 | 1,19 | 1,6 | 1,6 | 86,27 |
4 | 0,48 | 350,4 | 0,81 | 6,4 | 1,1 | 36,17 |
5 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0,31 | 171,5 | 0,4 | -5,62 |
7 | 0 | 0 | 0,66 | 173,7 | 0,88 | -12,31 |
8 | 0 | 0 | 0,85 | 177,2 | 1,15 | -16,1 |
9 | 0 | 0 | 0,88 | 178,8 | 1,19 | -16,67 |
10 | 0 | 0 | 0,76 | 175 | 1,02 | -14,28 |
11 | 0 | 0 | 0,45 | 171,2 | 0,63 | -8,68 |
Точки пересечения этих перпендикуляров с диаграммой
проецируем на ось ординат и соединяем найденные точки 1', 2'... 6' и т. д. с полюсом р (точки 1', 2 , 3', 4', 5' слились в одну). Из начала координат диаграммы
проводим прямую, параллельную лучу р—1', получаем точку 1". Из точки 1" проводим прямую 1"—2", параллельную лучу р—2'... (8м—9м)" \(р—9') и т. д. Масштаб диаграммы работ определяем по формуле:где
Так как
то диаграмма работ есть прямая линия.