в подогревателе П4: Р4' = 0,49 МПа.
При транспортировке греющего пара из камеры отбора турбины до соответствующего подогревателя на преодоление путевых и местных сопротивлений затрачивается от 5 до 8% давления в отборе. Поэтому в отборах турбины должны быть соответственно давления:
в первой камере отбора:
Р1 = (1,05…1,08)×Р1' = 1,065×0,034=0,036 МПа;
в третьей камере отбора:
Р3 = (1,05…1,08)×Р3' = 1,065×0,26=0,28 МПа;
в четвёртой камере отбора:
Р4 = (1,05..1,08)×Р4' = 1,065×0,49=0,52 МПа.
Для обеспечения надёжной работы деаэратора при небольшом пониже-нии нагрузки турбины в камере отбора пара в деаэратор атмосферного давления принимается расчётное значение Р2 = 0,117 МПа.
В i-s – диаграмме находим изобары, соответствующие давлениям в камерах отбора турбины Р1, Р2, Р3 и Р4. В точках пересечения этих изобар с линией процесса турбины О'а'b'с'К (рис. 2) определим параметры пара, отбираемого из проточной части турбины для РППВ. Энтальпии греющего пара в отборах 1, 2, 3 и 4 будут соответственно:
i1 = 2561 кДж/кг;
i2 = 2722 кДж/кг;
i3 = 2870 кДж/кг;
i4 = 2980 кДж/кг.
Использованные в турбине перепады энтальпий потоков пара, отводимых в подогреватели, будут:
Hi1 = i0 - i1 = 3337 – 2561 = 776 кДж/кг;
Hi2 = i0 - i2 = 3337 – 2722 = 615 кДж/кг;
Hi3 = i0 - i3 = 3337 – 2870 = 467 кДж/кг;
Hi4 = i0 - i4 = 3337 – 2980 = 357 кДж/кг.
Пароструйный эжектор, как правило, работает свежим паром, который дросселируется до расчётного давления, так что его энтальпия
iэ ≈ i0 = 3332 кДж/кг.
Конденсация греющего пара в эжекторе происходит при давлении, близком к атмосферному, поэтому его энтальпия может быть принята
q'э = 419,7 кДж/кг.
Расход пара в эжектор зависит от мощности ПТУ. Gэ = 0,02…0,4 кг/с.
2.3. Уравнения теплового баланса подогревателей, уравнения баланса мощностей и расходов пара и воды.
В регенеративных подогревателях паротурбинной установки, как и в других теплообменниках, тепло Q, отдаваемое потоками греющего теплоносителя, расходуется на нагрев подогреваемого теплоносителя Q' и на потерю тепла в окружающую среду ΔQ. Уравнение теплового баланса подогревателя устанавливает равенство между количествами подведённого и отведённого тепла:
Q=Q'+ΔQ
или
Q=Q'/η ,
где η – КПД подогревателя.
Значения ΔQ и η определяются по опытным данным для соответствующего типа подогревателя. Их величина зависит от температуры теплоносителей в подогревателе, от качества изоляции корпуса подогревателя. Для предварительных расчетов тепловых схем ПТУ рекомендуются следующие значения КПД:
ПНД — η = 0,99…0,995; ПВД — η = 0,97…0,98; деаэраторы — η = 0,94…0,95.
В соответствии с тепловой схемой (рис.1) уравнения балансов будут иметь следующий вид.
Уравнения теплового баланса:
1. для эжектора Э:
(16);
2. для ПНД П1:
(17);3. для ПНД Д (П2):
(18);4. для ПВД П3:
(19);5. для ПВД П4:
(20);Уравнение баланса расходов:
(21);Уравнение мощностей:
(22)где Gк – расход пара в конденсатор; Gэ – в эжектор; G1, G2, G3 и G4 в подогреватели П1, П2, П3 и П4.
Семь уравнений балансов составляют замкнутую систему, так как определяют связь между семью неизвестными: Gк, Gэ, G1, G2, G3 и G4, а также внутренней мощностью турбины Ni. Остальные величины в этой системе уравнений можно выбрать на основании вышеуказанных рекомендаций и записать в уравнения в численном виде.
Вначале в первом приближении задаем расход по выражению:
Gк = Кк G0к = (1/K)×G0к =9,3/1,1 = 8,45 кг/с.
Решаем данную систему уравнений методом последовательных приближений. Результаты расчётов заносим в таблицу 1.
Итак, Gэ=0,05 кг/с, G1=0,53 кг/с, G2=0,53 кг/с, G3=0,42 кг/с,
G4=0,43 кг/с.
Nik= Gk×Hi = 8,45×990,53 = 12005,22 кВт;
Ni1= G1×Hi1 = 0,53×776 = 411,26 кВт;
Ni2= G2×Hi2 = 0,53×615 = 325,95 кВт;
Ni3= G3×Hi3 = 0,42×467 = 196,14 кВт;
Ni4= G4×Hi4 = 0,43×357 = 153,51 кВт;
Ni'=Nik+Ni1+Ni2+Ni3+Ni4 = 8519,8+411,28+325,95+196,14+153,51 =
= 9606,68 кВт.
Расчётная внутренняя мощность равна Ni'= 9606,68 кВт.
Сравним её с принятой в начале расчёта по выражению (4).
Для предварительного расчёта расхождение не более ±3% допустимо.
Окончательные результаты расчета приведены в табл. 1.
Таблица 1
1 | Наименование величины | Размер-ности | К | Э | П1 | П2(Д) | П3 | П4 | |||
2 | Давление пара в камере отбора турбины | Мпа | 0,006 | — | 0,036 | 0,117 | 0,28 | 0,52 | |||
3 | Давление пара в теплообменнике | Мпа | 0,00426 | 0,1 | 0,034 | 0,1 | 0,26 | 0,49 | |||
4 | Подогреваемый теплоноситель | Энтальпия при выходе из теплообменника | кДж/кг | 121,42 | 138,62 | 279,16 | 419,7 | 516,45 | 613,2 | ||
5 | Энтальпия при входе в теплообменник | кДж/кг | — | 121,42 | 279,16 | 302,46 | 419,7 | 516,45 | |||
6 | Повышение энтальпии в теплообменнике | кДж/кг | — | 17,2 | 140,54 | 96,75 | 96,75 | ||||
7 | Расход подогреваемого теплоносителя | кг/с | — | 8,45 | 8,45 | 10,04 | 10,04 | ||||
8 | Сообщенное тепло | кДж/кг | — | 145,34 | 1187,56 | 1255,56 | 994,59 | 994,59 | |||
9 | Поправка на потерю тепла | кДж/кг | — | 1,005 | 1,005 | 1,053 | 1,02 | 1,02 | |||
10 | Сообщенное тепло с учетом поправки | кДж/кг | — | 146,07 | 1193,5 | 1322,11 | 1014,48 | 1014,48 | |||
11 | Греющий теплоноситель | Энтальпия при входе в теплообменник | кДж/кг | –– | 3337 | 2561 | 2722 | 539,75 | 2870 | 636,5 | 2980 |
12 | Энтальпия при выходе из теплообменника | кДж/кг | — | 419,7 | 302,46 | 419,7 | 539,75 | 636,5 | |||
13 | Понижение энтальпии в теплообменнике | кДж/кг | — | 2917,3 | 2258,54 | 2302,3 | 120,05 | 2330,25 | 96,75 | 2343,25 | |
14 | Отдаваемое тепло | кДж/кг | — | 146,07 | 1193,5 | 1322,11 | 1014,48 | 1014,48 | |||
15 | Расход греющего теплоносителя | кг/с | 8,45 | 0,05 | 0,53 | 0,53 | 0,42 | 0,43 | |||
16 | Использованный перепад энтальпий в турбине | кДж/кг | 1008,26 | — | 776 | 357 | |||||
17 | Внутренняя мощность | кВт | 8519,8 | — | 411,28 | 325,95 | 196,14 | 153,51 |