Смекни!
smekni.com

Аппарат вертикальный с механическим перемешивающим устройством (стр. 2 из 5)

(13)

Здесь коэффициент К2, зависящий от коэффициентов К1 и К3, определяется по номограмме (приложение В) в зависимости от значения коэффициентов К1 и К3.

Коэффициент К1:

(14)

Здесь ny=2,4 - коэффициент запаса устойчивости при рабочих условиях [4],

Е=2·105 Н/мм2 - модуль продольной упругости (см. п.1.2)

Коэффициент К3:

К3= ℓ/D = 370/800 = 0,4625. (15)

Коэффициент К2 определяем по номограмме (рис. В1 приложения В).

Получаем: К2= 0,46. Тогда толщина стенки

SR=K2·D·10-2=0,46·800·10-2=3,68 мм. (16)

(17)

Из двух расчетных толщин SR; SR принимаем большую величину, т.е.

SR = max (SR; SR) = max (3,68; 1,31) = 3,68 мм. (18)

По трем рассчитанным формулам (8), (10) и (16) получены три значения толщины стенки обечайки корпуса 2,7 мм; 1,3 мм; 3,68 мм. Принимаем большее из них, т.е. SR= 3,68 мм.

Прибавки к расчетной толщине стенки обечайки:

С = С1+ С2+ С3. (19)

Здесь С1 - прибавка для компенсации коррозии и эрозии:

С1= СЭК, (20)

где СЭ - прибавка для компенсации эрозии. СЭ=0, т.к скорость движения среды в аппарате менее 20 м/с и отсутствуют абразивные частицы,

СК- прибавка для компенсации коррозии:

СК= П·τ = 0,1·5 = 0,5 мм. (21)

Здесь τ = 5 лет - срок службы аппарата,

П=0,1 мм/год - скорость коррозии для стали 08Х18Н10Т.

Тогда

С1= СК+ СЭ= 0,5+ 0 = 0,5мм.

Примечания: - Скорость коррозии принимается П = 0,1 мм/год, если она не оговорена в таблице Б1 приложения Б.

Обечайка корпуса с наружной стороны омывается водой (паром), но при температуре 20 … 100°С вода (пар) не вызывает коррозии легированных сталей, поэтому принимаем Пнар= 0 мм/год.

Для обечайки корпуса, изготовленной из сталей ВМСтЗсп, 20, 20К и других углеродистых сталей следует учитывать коррозию с обеих сторон, т.е. с внутренней и наружной

С1= П·τ + Пнар·τ + СЭ, (22)

где Пнар- скорость коррозии с наружной стороны от воды (пара). Значение ее принимается по таблице А1 приложения А.

С2 - прибавка для компенсации минусового допуска листа стали при изготовлении. Минусовый допуск выбираем по таблице Г1 приложения Г). Для толщины SR= (8…24) мм С2=0,4 мм. В нашем расчете SR= 3,68 мм, поэтому мы приняли диапазон размеров больше 3мм.

С3 - прибавка технологическая (учитывает утончение листа при вальцовке), для толщины от 3 до 30 мм принимают С3=0,3 мм.

В итоге получаем:

С = С12 + С3 = 0,75+0,4+0,3 =1,45 мм.

Толщина стенки обечайки с учетом прибавок

S'= SR = 3,68+1,45 = 5,13 мм. (23)

Исполнительная толщина стенки обечайки корпуса, принятая по стандарту (табл. Г1 приложения Г) S=6 мм.

2.3 Расчет эллиптического днища

Согласно заданию в аппарате предусмотрены эллиптические днище и крышка.

Для днища и крышки принята сталь 08Х18Н10Т (см. п.1.2) с допускаемым напряжением [σ] =168 МПа и модулем упругости Е=2·105 МПа.

В процессе работы аппарата днище корпуса испытывает следующие деформации:

растяжение от внутреннего давления,

сжатие (потеря устойчивости формы днища) от наружного давления - давления в рубашке.

2.3.1 Толщина стенки днища, нагруженного внутренним расчетным избыточным давлением, определяется выражением

Рисунок 3 - Внутреннее давление Рр, действующее на днище корпуса.

=

2,39 мм (24)

Здесь R- радиус кривизны в вершине днища. Для стандартного эллиптического днища R = D = 800 мм.,

φ - коэффициент прочности сварного шва. Принимаем днище не сварное, а цельное штампованное, поэтому φ = 1.

Рисунок 4 - Внешнее давление РН, действующие на днище корпуса.

2.3.2 Толщина стенки днища, нагруженного наружным давлением, рассчитывается по формуле

(25)

где КЭ - коэффициент приведения радиуса кривизны эллиптического днища.

Предварительно принимаем КЭ=0,9.

2.3.3 Конструктивная прибавка к расчетной толщине днища

С' = С1 + С2 + С3.

Здесь также С1= П∙τ+СЭ= 0,1∙5+0 = 0,5 мм - прибавка на коррозию,

С2= 0,4 мм (для толщины 6 мм по табл. Д1, приложение Д) - прибавка на минусовой допуск изготовления листа,

С3=0,3 мм (см. п.2.2.5) - прибавка на утончение при изготовлении днища.

В результате получаем:

С' = 0,5 + 0,4 + 0,3 = 1,2 мм.

2.3.4 Толщина днища с учетом прибавок

S1= S1R + C= 2,17+ 1,2 = 3,37 мм ≈ 4,0 мм.

Исполнительная толщина стенки днища, принятая по стандарту (табл. Д1, приложение Д) S1= 4 мм.

2.3.5 Для эллиптических днищ, если длина цилиндрической отбортованной части h, больше параметра

, т.е.
< h, то толщина стенки днища S1 должна быть не менее толщины стенки обечайки, т.е. S1S.

Длину (высоту) отбортованной части при D=800 мм и S1=4 мм принимаем по таблице Д1 приложения Д: h = 25 мм.

Определяем параметр

(26)

Замечаем, что

= 47,33> h=25, поэтому можно принять S1 <S. Принимаем S1=4 мм.

Толщину крышки аппарата принимают такой же как и толщину днища S1=4 мм.

2.4 Расчет рубашки аппарата

Согласно заданию рубашка гладкая приварная (не отъемная).

Для рубашки выбрана (см. п.1.1, 1.2) качественная углеродистая конструкционная сталь 20К, у которой допускаемое напряжение [σ] руб. =147 МПа и модуль упругости Еруб. =1,99·105 МПа.

2.4.1 По таблице Е1 приложения Е принимаем диаметр рубашки Dр=900 мм, параметр а = 30 мм

Рисунок 5 - К расчету высоты рубашки

2.4.2 Высота рубашки с учетом днища (без толщины днища)

(27)

h1=650мм (см. п.2.1 1),

=150 (см. п.2.2.3.1)

Получаем: hp=650+30-150=830 мм

2.4.3 Расчет обечайки рубашки

В процессе работы аппарата обечайка рубашки испытывает следующие деформации:

растяжение в окружном направлении от внутреннего давления в рубашке, растяжение по высоте аппарата от осевой растягивающей силы.

2.4.3.1 Внутреннее избыточное давление в рубашке

.

2.4.3.2 Расчетное давление в рубашке

, (28)

где Рр- заданное давление в рубашке (0,4 МПа),

РГ - гидростатическое давление в нижней части рубашки.

Учитывая, что нагрев аппарата может производиться горячей водой, имеем:

(29)

где ρВ=1000 кг/м3 - плотность воды.

Оцениваем величину гидростатического давления

. (30)

Если ∆Р% ≤ 5%, то гидростатическое давление не учитывают. В нашем примере ∆Р%=2,035%, поэтому расчетное давление в рубашке

= 0,5 МПа. (31)

2.4.3.3 Толщина стенки обечайки рубашки от внутреннего расчетного давления

(32)

Здесь [σ] руб. =147 Н/мм2 - допускаемое напряжение материала рубашки (см. п.1.2), φ=0,9 - коэффициент прочности сварного шва.

2.4.3.4 Осевая растягивающая сила для рубашки

(33)

2.4.3.5 Толщина стенки обечайки рубашки от осевой растягивающей силы

(34)

Из двух полученных значений расчетной толщины стенки принимаем большее SR=1,70 мм.

2.4.3.6 Прибавки к толщине стенки рубашки (см. п.2.2.5)

(35)

= 0,1∙5+0 = 0,5 мм (36)

Пруб=0,1 мм/год (принимаем по табл. Б1 приложения Б при 100°С).

С2=0,4 мм, С3=0,3 мм

Получаем:

Сруб = 0,5+0,4+0,3 = 1,2 мм

2.4.3.7 Толщина стенки обечайки рубашки с учетом прибавок