Здесь коэффициент К2, зависящий от коэффициентов К1 и К3, определяется по номограмме (приложение В) в зависимости от значения коэффициентов К1 и К3.
Коэффициент К1:
(14)Здесь ny=2,4 - коэффициент запаса устойчивости при рабочих условиях [4],
Е=2·105 Н/мм2 - модуль продольной упругости (см. п.1.2)
Коэффициент К3:
К3= ℓ/D = 370/800 = 0,4625. (15)
Коэффициент К2 определяем по номограмме (рис. В1 приложения В).
Получаем: К2= 0,46. Тогда толщина стенки
SR′=K2·D·10-2=0,46·800·10-2=3,68 мм. (16)
(17)Из двух расчетных толщин SR′; SR″ принимаем большую величину, т.е.
SR = max (SR′; SR″) = max (3,68; 1,31) = 3,68 мм. (18)
По трем рассчитанным формулам (8), (10) и (16) получены три значения толщины стенки обечайки корпуса 2,7 мм; 1,3 мм; 3,68 мм. Принимаем большее из них, т.е. SR= 3,68 мм.
Прибавки к расчетной толщине стенки обечайки:
С = С1+ С2+ С3. (19)
Здесь С1 - прибавка для компенсации коррозии и эрозии:
С1= СЭ +СК, (20)
где СЭ - прибавка для компенсации эрозии. СЭ=0, т.к скорость движения среды в аппарате менее 20 м/с и отсутствуют абразивные частицы,
СК- прибавка для компенсации коррозии:
СК= П·τ = 0,1·5 = 0,5 мм. (21)
Здесь τ = 5 лет - срок службы аппарата,
П=0,1 мм/год - скорость коррозии для стали 08Х18Н10Т.
Тогда
С1= СК+ СЭ= 0,5+ 0 = 0,5мм.
Примечания: - Скорость коррозии принимается П = 0,1 мм/год, если она не оговорена в таблице Б1 приложения Б.
Обечайка корпуса с наружной стороны омывается водой (паром), но при температуре 20 … 100°С вода (пар) не вызывает коррозии легированных сталей, поэтому принимаем Пнар= 0 мм/год.
Для обечайки корпуса, изготовленной из сталей ВМСтЗсп, 20, 20К и других углеродистых сталей следует учитывать коррозию с обеих сторон, т.е. с внутренней и наружной
С1= П·τ + Пнар·τ + СЭ, (22)
где Пнар- скорость коррозии с наружной стороны от воды (пара). Значение ее принимается по таблице А1 приложения А.
С2 - прибавка для компенсации минусового допуска листа стали при изготовлении. Минусовый допуск выбираем по таблице Г1 приложения Г). Для толщины SR= (8…24) мм С2=0,4 мм. В нашем расчете SR= 3,68 мм, поэтому мы приняли диапазон размеров больше 3мм.
С3 - прибавка технологическая (учитывает утончение листа при вальцовке), для толщины от 3 до 30 мм принимают С3=0,3 мм.
В итоге получаем:
С = С1+С2 + С3 = 0,75+0,4+0,3 =1,45 мм.
Толщина стенки обечайки с учетом прибавок
S'= SR+С = 3,68+1,45 = 5,13 мм. (23)
Исполнительная толщина стенки обечайки корпуса, принятая по стандарту (табл. Г1 приложения Г) S=6 мм.
Согласно заданию в аппарате предусмотрены эллиптические днище и крышка.
Для днища и крышки принята сталь 08Х18Н10Т (см. п.1.2) с допускаемым напряжением [σ] =168 МПа и модулем упругости Е=2·105 МПа.
В процессе работы аппарата днище корпуса испытывает следующие деформации:
растяжение от внутреннего давления,
сжатие (потеря устойчивости формы днища) от наружного давления - давления в рубашке.
Рисунок 3 - Внутреннее давление Рр, действующее на днище корпуса.
= 2,39 мм (24)Здесь R- радиус кривизны в вершине днища. Для стандартного эллиптического днища R = D = 800 мм.,
φ - коэффициент прочности сварного шва. Принимаем днище не сварное, а цельное штампованное, поэтому φ = 1.
Рисунок 4 - Внешнее давление РН, действующие на днище корпуса.
где КЭ - коэффициент приведения радиуса кривизны эллиптического днища.
Предварительно принимаем КЭ=0,9.
С' = С1 + С2 + С3.
Здесь также С1= П∙τ+СЭ= 0,1∙5+0 = 0,5 мм - прибавка на коррозию,
С2= 0,4 мм (для толщины 6 мм по табл. Д1, приложение Д) - прибавка на минусовой допуск изготовления листа,
С3=0,3 мм (см. п.2.2.5) - прибавка на утончение при изготовлении днища.
В результате получаем:
С' = 0,5 + 0,4 + 0,3 = 1,2 мм.
S1’= S1R + C’= 2,17+ 1,2 = 3,37 мм ≈ 4,0 мм.
Исполнительная толщина стенки днища, принятая по стандарту (табл. Д1, приложение Д) S1= 4 мм.
Длину (высоту) отбортованной части при D=800 мм и S1=4 мм принимаем по таблице Д1 приложения Д: h = 25 мм.
Определяем параметр
(26)Замечаем, что
= 47,33> h=25, поэтому можно принять S1 <S. Принимаем S1=4 мм.Толщину крышки аппарата принимают такой же как и толщину днища S1=4 мм.
Согласно заданию рубашка гладкая приварная (не отъемная).
Для рубашки выбрана (см. п.1.1, 1.2) качественная углеродистая конструкционная сталь 20К, у которой допускаемое напряжение [σ] руб. =147 МПа и модуль упругости Еруб. =1,99·105 МПа.
Рисунок 5 - К расчету высоты рубашки
(27)
h1=650мм (см. п.2.1 1), =150 (см. п.2.2.3.1)
Получаем: hp=650+30-150=830 мм
В процессе работы аппарата обечайка рубашки испытывает следующие деформации:
растяжение в окружном направлении от внутреннего давления в рубашке, растяжение по высоте аппарата от осевой растягивающей силы.
2.4.3.1 Внутреннее избыточное давление в рубашке
.2.4.3.2 Расчетное давление в рубашке
, (28)
где Р′р- заданное давление в рубашке (0,4 МПа),
РГ - гидростатическое давление в нижней части рубашки.
Учитывая, что нагрев аппарата может производиться горячей водой, имеем:
(29)где ρВ=1000 кг/м3 - плотность воды.
Оцениваем величину гидростатического давления
. (30)Если ∆Р% ≤ 5%, то гидростатическое давление не учитывают. В нашем примере ∆Р%=2,035%, поэтому расчетное давление в рубашке
= 0,5 МПа. (31)2.4.3.3 Толщина стенки обечайки рубашки от внутреннего расчетного давления
(32)Здесь [σ] руб. =147 Н/мм2 - допускаемое напряжение материала рубашки (см. п.1.2), φ=0,9 - коэффициент прочности сварного шва.
2.4.3.4 Осевая растягивающая сила для рубашки
(33)2.4.3.5 Толщина стенки обечайки рубашки от осевой растягивающей силы
(34)Из двух полученных значений расчетной толщины стенки принимаем большее SR=1,70 мм.
2.4.3.6 Прибавки к толщине стенки рубашки (см. п.2.2.5)
(35)
= 0,1∙5+0 = 0,5 мм (36)Пруб=0,1 мм/год (принимаем по табл. Б1 приложения Б при 100°С).
С2=0,4 мм, С3=0,3 мм
Получаем:
Сруб = 0,5+0,4+0,3 = 1,2 мм
2.4.3.7 Толщина стенки обечайки рубашки с учетом прибавок