t = 32°С t2 = 0° С δ1 = 0,6 мм
δ2 = 33 мм δ3 = 2 мм
k1 =
Вт/мКб) рассчитывается коэффициент теплопередачи низкотемпературной камеры
t = 32°С t2 = -20° С δ1 = 0,6 мм
δ2 = 44 мм δ3 = 2 мм αвн = 3,5 Вт/мК
k2 =
Вт/мКГеометрические размеры холодильника
а) геометрические размеры температурной камеры
где h1 – высота морозильной камеры,
в – глубина морозильной камеры
Внутренний рабочий объем НТК – 80 дм3.
Объем камеры определяется по формуле:
VHTK = α·в·h
Определим высоту камеры:
VHTK = (0,6-0,08·2)(0,6-0,08·2)·h
h = 0,08/0,1936= 0,4132 м
Определим габаритный размер камеры НТК с учетом изоляции и перегородок и учитывая то, что высота отсчитывается от средней линии в перегородке
1 – внутренняя и внешняя стенка
2 – изоляционный слой
h = h + (8+5)
h = 41,32 + (8+5) = 45,4= 0,454 м
б) геометрические размеры холодильной камеры (хк)
Внутренний объем ХК:
Vхк = 133 дм3
Объем холодильной камеры определяется по формуле:
Vхк = α·в·h, где
h – действительная высота холодильной камеры
Vхк = 133 дм3 = 0,133 м3 α = 0,6 м в = 0,6 м
Толщина изоляции и перегородки 80 мм = 0,08 м
Vхк = (0,6-0,08·2)(0,6-0,08·2) h
h = 0,133/0,1936 = 0,686 м
Определим габаритный размер холодильной камеры, с учетом изоляции перегородок и учитывается то, что высота отсчитывается с учетом средней линии:
h2 = h + (8+5) = 68,6 + 13 = 0,817 м
в) геометрические размеры камеры для хранения овощей и фруктов:
Внутренний объем ХК:
Vхк = 92 дм3
Объем холодильной камеры определяется по формуле:
Vхк = α·в·h, где
h – действительная высота холодильной камеры
Vхк = 92 дм3 = 0,092 м3 α = 0,6 м в = 0,6 м
Толщина изоляции и перегородки 80 мм = 0,08 м
Vхк = (0,6-0,08·2)(0,6-0,08·2) h
h = 0,092/0,1936 = 0,475 м
Определим габаритный размер холодильной камеры, с учетом изоляции перегородок и учитывается то, что высота отсчитывается с учетом средней линии:
h3 = h + (8+5) = 47,5 + 13 = 60,5 м
Общая высота холодильника
H = h1 + h2+ h3 = 0, 454+ 0,817+0,605 = 1,85 м
Расчет площадей поверхностей холодильника
Рассчитываем все площади поверхности холодильника:
а) площадь поверхности морозильной камеры НТК
Sнтк = (α – 0,08)(в – 0,08) + (в – 0,08)(h1 – (0,04+0,05))·2 + (α – 0,08)( h1 – (0,04+0,05))·2
Sнтк = 1,215 м2
б) площадь поверхности холодильной камеры:
Sхк = (α – 0,08)(в – 0,08) + (в – 0,08)(h2 – (0,04+0,05))·2 + (α – 0,04)( h2– (0,04+0,05))·2
Sхк = 3,1784 м2
в) площадь поверхности камеры для овощей и фруктов:
Sхк = (α – 0,08)(в – 0,08) + (в – 0,08)(h3– (0,04+0,05))·2 + (α – 0,04)( h– (0,04+0,05))·2
Sхк = 2,3304 м2
д) площадь поверхности перегородки между морозильной камерой и плюсовой
Sп = (α – 0,1)(в – 0,1) = 0,25 м2
г) площадь поверхности между плюсовой и низкотемпературной камерами
Sп2 = (α – 0,08)(в – 0,08) = 0,2704 м2
Теплопритоки через ограждения
а) теплоприток из внешней среды в морозильную камеру НТК
Q΄1 = k2 · Sнтк ΔТ
Q΄1 = 0,537·1,215 (32-(-18)) = 32,623 Вт
б) теплоприток из внешней среды в холодильную камеру
Q"1 = k2 · Sнтк ΔТ = 0,765 · 3,1784 (32-5) = 77,8 Вт
в) теплоприток из внешней среды в камеру для хранения овощей и фруктов
Q"’1 = k2 · Sнтк ΔТ = 0,765 · 2,3304 (32-0) = 57,05 Вт
Q1 = общий теплоприток через все ограждения
Q1 = Q΄1 + Q"1 + Q"’1 =32,623 + 77,8 + 57,05 = 167,48 Вт
Тепловая нагрузка от воздухообмена:
Q2 = 0,05 (Q1 + Q3)
Q2 = 0,05 (167,48 + 0,096) = 8,378526 Вт
а) Тепловая нагрузка от воздухообмена в ХК
Q΄2 = 0,05(Q΄1+ Q3΄)
Q΄2 = 0,05(77,8 + 0,09) = 3,89 Вт
б) Тепловая нагрузка от воздухообмена в НТК
Q"2 = 0,05(Q"1 + Q"3)
Q"2 = 0,05(32,623 + 6,25 · 10-4) = 1,63Вт
в) Тепловая нагрузка от воздухообмена в камеру для хранения овощей и фруктов
Q’’΄2 = 0,05(Q΄1+ Q3΄)
Q’’΄2 = 0,05(57,05 + 0,09) = 2,857 Вт
Определяем холодопроизводительность холодильного агрегата для холодильника
Общая тепловая нагрузка:
Q΄0 х.а = Q1 + Q2 + Q3 + Q4, где
Q4 = 1,05 (Q1 + Q2 + Q3)
Q4 = 1,05 (77,8 + 3,89 + 0,096) = 85,87 Вт
Q΄0 х.а = 77,8 + 3,89 + 0,096 + 86 = 167,66 Вт
а) определяем холодопроизводительность холодильного агрегата для ХК
Q΄0 х.а(хк)= Q1΄+ Q2΄+ Q3΄+ Q4΄= 167,66 Вт
Результаты расчета для надежности увеличиваются на 5-10%. Это зависит от достоверности данных, применяющихся при расчете тепловой нагрузки.
Q"0 х.а = 1,05Σ Qi=1,05( Q΄0 х.а(хк))=1,05*= 176 Вт
б) определяем холодопроизводительность холодильного агрегата для НТК.
Q΄΄0 х.а(нтк)= Q1΄΄+ Q2΄΄+ Q3΄΄+ Q4΄΄=34,253Вт
Результаты расчета для надежности увеличиваются на 5-10%. Это зависит от достоверности данных, применяющихся при расчете тепловой нагрузки.
Q"0 х.а = 1,05Σ Qi=1,05( Q΄΄0 х.а(нтк))=35,96 Вт
в) определяем холодопроизводительность холодильного агрегата для камеры для хранения овощей и фруктов
Q΄΄0 х.а(нтк)= Q1΄΄+ Q2΄΄+ Q3΄΄+ Q4΄΄=59,9Вт
Результаты расчета для надежности увеличиваются на 5-10%. Это зависит от достоверности данных, применяющихся при расчете тепловой нагрузки.
Q"0 х.а = 1,05Σ Qi=1,05( Q΄΄0 х.а(нтк))=62,9 Вт
Учитывая, что холодильный агрегат бытового холодильника с некоторым коэффициентом рабочего времени в, равным 0,35 холодопроизводительность холодильного агрегата определяется по формуле:
Q0 х.а = Q"0 х.а / в
а) холодопроизводительность в (ХК)
Q0 х.а = Q"0 х.а(хк) / в =502Вт
б) холодопроизводительность в (НТК)
Q0 х.а = Q"0 х.а(нтк) / в=102,75 Вт
в) холодопроизводительность в камере для хранения овощей и фруктов
Q0 х.а = Q"0 х.а(нтк) / в=179,721 Вт
К = 1,1 в = 0,35
2.3 Тепловой расчет компрессора.
Исходные данные для расчета:
Q0 х.а = 837,79 Вт, R 134а,
То = -250С ; Тк = 550С; Твс = 100С
Расчет компрессора:
1) удельная холодопроизводительность 1-го килограмма агента
qo = i1 – i4
qo = 385 – 255 = 130 кДж/кг
2) массовый расход, паро-массовая подача компрессора
М = Qoха / qo = 837,79 · 10-3 / 130 = 0,0064 (кг/с)
3) объемный расход, парообъемная подача компрессора
Vд = M · V'1 = 0,0064 · 0,15 = 0,00096 (м3/с)
4) коэффициент подачи компрессора в зависимости от степени сжатия Рк / Ро
Е = Рк / Ро = 1,5 / 0,125 = 12 λ = 0,75
5) описанный объем компрессора
V = Vд / λ = 0,00096 / 0,75 = 0,00128 м3
- теоретическая мощность компрессора
NT = M (i2 – i1)
NT = 0,0064 (470 - 385) = 0,544 кВт
- действительная мощность компрессора
Ni = NT / ηi = 0,544/0,7 = 0,777 кВт
- эффективная мощность компрессора
Ne= Ni / ηм , где
ηм = механический КПД, учитывающий потери на трение ;
ηi– индикаторный КПД компрессора
Ne = 0,777 / 0,85 = 0,914 кВт
По эффективной мощности и холодопроизводительности подбираем компрессор ХКВ8 – 1ЛМ УХЛ.
2.4 Расчет конденсатора.
Конденсатор холодильного агента является теплообменным аппаратом, в котором хладагент отдает тепло охлаждающей его среде.
В агрегатах бытовых холодильников в соответствии с условием их эксплуатации применяют конденсаторы с воздушным охлаждением.
Исходные данные для расчета: конденсатор изготовлен из медных трубок оребренных листовым алюминием; коэффициент теплоотдачи от R 134а к стенкам трубки конденсатора αх.а = 1030
; коэффициент теплоотдачи от стенки трубки конденсатора окружающей среде αв = 19,5 ; толщина стенки трубки конденсатора δi = 0,65 · 10-3 м; коэффициент теплопроводности меди λi= 332 ;температура конденсации хладона R 134а Тк = 550С; температура воздуха на входе в конденсатор Тв1 = 360С; температура воздуха на выходе из конденсатора Тв2 = 400С.Площадь конденсатора: F =
, гдеQk – производительность конденсатора, Вт;
к – коэффициент теплоотдачи, Вт/мК;
Δtm – средняя логарифмическая разность между температурами холодного агента и окружающей среды.
Производительность конденсатора определяется по формуле:
Qk = (i1 – i3)M, где
М - массовая подача компрессора;
i1, i3 '– удельная энтальпия в точках 1 и 3'_
Qk = (385 - 255)·0,0064 = 0,832 кДж/с = 715,52 ккал/час
Коэффициент теплопередачи определяется по формуле:
к =
= 19,13Средняя логарифмическая разность между температурами холодильного агента и окружающей среды определяется :
Δtm = [(Тк – Тв1) – (Тк – Тв2)] / 2,3 lg[(Тк – Тв1)/ (Тк – Тв2)],где
Тв1, Тв2 - температуры воздуха на входе и выходе из конденсатора,
Тк – температура конденсации
Δtm =