4.3.4 Конструктивная схема терморегулятора «Плайгер»
Наиболее распространённой является модель регулятора с клапанно-золотниковым РО и автономным позиционером типа SMS. Регулирующий орган регулятора выполнен в виде золотника. РО включён в систему охлаждения по принципу «подмеса», как смеситель потоков. Чем выше расположен золотник, тем большее количество воды проходит из охладителя и тем меньше от насоса горячей воды. Золотник перемещается пневматически сервомотором с мембраной , усилие на которой уравновешивается пружиной , а движение передаётся к золотнику штоком. На штоке укреплён рычаг ЖОС . При перемещении штока рычаг ЖОС поворачивается и изменяет натяг пружины ЖОС и заслонки. Сила деформации пружины и заслонки уравновешивается командным давлением воздуха из сопла второго каскада усиления. Командное давление подводится через дроссель регулировки коэффициента усиления после редукционного клапана и фильтра очистки воздуха. Давление за дросселем поддерживается строго постоянным, равным 1,1 бар. При различных степенях открытия сопла первого каскада усиления командное давление может принимать значения в диапазоне от 0,2 до 1,0 бар. Открытие сопла определяется температурой, замеренной датчиком (дилатометрическим чувствительным элементом). При установившемся значении регулируемой температуры открытие сопла остаётся постоянным; ему соответствует определённое давление командного воздуха, действующего на заслонку позиционера . Это давление уравновешивается давлением пружины ЖОС. От величины сжатия пружины зависит давление в камере А усилителя третьего каскада где золотник стравливает через отверстие в атмосферу воздух питания (1,5 бар) , подводимый к позиционеру. Каждому положению дросселя позиционера соответствует определённое давление рабочего воздуха Р раб и, следовательно, положение золотника.
Датчик температуры и блок управления , расположенные в закрытом корпусе устанавливают давление командного воздуха следующим образом: трубка датчика , материал которой обладает большим коэффициентом линейного расширения, при нагревании удлиняется и перемещает вниз стержень со скобой,жестко соединённый с ней в нижней части. Вместе со скобой перемещается регулировочный винт, который упирается в заслонку и поворачивает её вокруг опоры, преодолевая сопротивление пластинчатой пружины. Зазор между соплом и заслонкой увеличивается, и большее количество воздуха будет стравливаться в атмосферу, что приведёт к понижению командного давления. Меньшее командное давление воздуха, поступающего к позиционеру, вызовет уменьшение давления рабочего воздуха Рраб. Сервомотор переместит золотник вверх, доля потока из охладителя увеличится. Одновременно с перемещением золотника вверх происходит поворот рычага ЖОС с одновременным сжатием пружины. После установления равновесного состояния заслонки , с одной стороны пружиной , с другой стороны давлением командного воздуха из сопла, через золотник усилителя третьего каскада будет подаваться рабочий воздух с определённым значением давления, соответствующего значению установившегося рабочего состояния.
Если регулируемая температура понижается, то действие регулятора протекает в противоположном направлении: давление командного воздуха увеличивается, увеличивается и рабочее давление Рраб, регулирующий золотник перемещается вниз, поток через холодильник уменьшается.
4.3.5 Настройка регулятора
Настройка регулятора на тот или иной номинал регулирования осуществляется поворотом винта , в головке которого предусмотрено отверстие для специального регулировочного ключа. Длиной части винта , выступающей из скобы, определяется температура начала стравливания золотника из положения, когда поток на холодильник закрыт, а температура низкая. Чем больше ввёрнут винт , тем выше температура начала стравливания РО и тем выше номинал настройки регулятора. Контроль за установкой температуры осуществляется через специальное отверстие в корпусе (глазок).
Для настройки зоны пропорциональности (неравномерности) служит винт настройки ЖОС и винт корректировки ЖОС. С помощью винта можно изменить длину рычага ЖОС , а следовательно ширину зоны пропорциональности. Для увеличения зоны неравномерности длину рычага ЖОС увеличивают. Этот орган настройки обычно используют только при начальной настройке терморегулятора.
Третьим элементом настройки , который также используется только при начальной наладке работы регулятора, является редукционный клапан. Чем меньше его открытие, тем медленнее реагирует регулятор на одно и тоже скачкообразное изменение температуры и , следовательно, тем больше его инерционность. Степень открытия редукционных клапанов влияет на величину командного давления воздуха на установившихся режимах. Чем меньше этот клапан открыт, тем ниже будет Рком при том же значении температуры. Меньшему значению Рком будет соответствовать большее открытие регулирующего органа (золотника) для потока из холодильников. По рекомендации фирмы-изготовителя редукционные клапаны должны быть открыты на 0,25¸0,5 оборота.
Четвёртым элементом настройки служит дроссель регулировки быстродействия, который служит для изменения времени открытия мембранного сервомотора.
Аварийное управление осуществляется при помощи ручного привода штока сервомотора (маховика). При переходе на ручное управление перекрывается подвод сжатого воздуха к регулятору.
Основные технические данные регуляторов температуры австрийской фирмы «Плайгер»:
· диапазон установки уровня поддержания температуры - любой, какой требуется в системах терморегулирования дизельных установок, начиная с 10°С;
· неравномерность, устанавливаемая воздушным дросселем перед блоком управления - 2¸6°С ;
· неравномерность, обеспечиваемая настройкой жёсткой обратной связи - 2¸8°С;
· расход воздуха на регулятор - 200¸500 л/ч
4.3.6 Система автоматического регулирования температуры охлаждающей воды цилиндров главного двигателя с измерителем «Плайгер» на входе и выходе из двигателя
При применении схемы САР температуры воды, охлаждающей цилиндры ГД, с измерителем на выходе из двигателя, учитывается только техническое состояние ЦПГ двигателя, а техническое состояние теплообменника, охлаждаемого забортной водой, не учитывается. С целью устранения этого недостатка возможно использование измерителя «Плайгер» на входе и выходе воды из двигателя с общей исполнительно-усилительной частью. В этом случае внешние воздействия , под влиянием которых изменяется картина колебания температуры в САР оцениваются двумя факторами:
1. Изменение нагрузки ГД. В этом случае температура охлаждающей воды изменяется быстрее на выходе из двигателя.
2. Изменение условий работы охладителя. В этом случае быстрее изменится температура охлаждающей воды на входе в ГД.
Второй фактор может быть нейтрализован двумя путями:
a) установкой САР стабилизации температуры забортной воды, поступающей от насоса (суда типа «Норильск»), которые включают в себя не только охладители но и подогреватели, и поэтому они сложны и дороги и используются лишь в особых условиях;
b) установкой двух измерителей (на входе и выходе ГД) с общей исполнительной частью.
Преимуществом такой САР является минимальная инертность регулирующего воздействия на компенсацию обоих вышеупомянутых внутренних воздействий.
Следует отметить, что в варианте САР с двумя измерителями объектом регулирования являются как двигатель, так и охладитель, и как отмечалось выше, стоимость эксплуатации значительно повышается.
4.4 Состав и структура регулятора вязкости
Объектом регулирования является участок топливной магистрали с паровым топливоподогревателем 45, пар к которому подводится через клапан 43.
В качестве ЧЭ применена капиллярная трубка 4 , через которую топливо из магистрали прокачивается шестерённым насосом 2 постоянной подачи.Насос и капилляр смонтированы в угловом патрубке 1, установленном на трубопроводе, идущем к двигателю.
Сигнал с ЧЭ поступает на вход дифференциального сильфонного датчика 6. При установившемся режиме шток сильфона неподвижен и через соединительный валик, рычаг 8, пластинчатую пружину 9 удерживает на ролике 10 заслонку 5 относительно сопла с зазором a1. Так как датчик может быть установлен на значительном расстоянии от пульта управления 18, то в него введён двухкаскадный усилитель мощности 14. Сжатый воздух от стабилизатора 17 под давлением 1,4*10^5 Па подаётся к двухседельному клапану 16 и дросселю 15 делителя давления. Давление Р1 на кольцевой торец нижних сильфонов уравновешивается силой жёсткости всех сильфонов, и двухседельный клапан 16 удерживается в закрытом положении, что соответствует определённому значению выходного давления Р2 в камере А. Это же давление действует на мембрану ЖОС 13, сила которой уравновешивается действием пружины на её жёсткий центр, удерживая через талрепный шток 12 поперечину 11 и опорный ролик 10 заслонку 5 в положении, пропорциональном приращению давления DРк.
Сигнал Р2, пропорциональный вязкости топлива, поступает в полость сильфонного датчика 21 изодромного ПИ-преобразователя, смонтированного в пульте 18. Сжатый воздух подаётся к пульту под давлением Рп от тогоже стабилизатора 17, поступая к дросселю делителя давления 20, задатчику дистанционного управления 41, и усилителю мощности 42.
Давление Р2 на торце сильфона 21 уравновешивается силой от его жёсткости. Торец сильфона системой тяг и рычагов связан с приводом оси стрелки 22 указателя истинной вязкости топлива и с рычагом 28. Рычаг через палец 29, пружину с петлёй 30 и ось 31 удерживает угловую заслонку 32 относительно сопла 34 в определённом положении. Зазор a2 и открытие дросселя 20 определяют давление Р3 в магистрали перед соплом и под мембраной датчика усилителя 42. Выходной сигнал усилителя в виде давления Р4 поступает в поллость мембранного исполнительного механизма 44 и к сильфонному блоку 25 изодромной обратной связи.