Государственный комитет Российской Федерации по высшему
образованию
Кафедра электронной техники
УТВЕРЖДАЮ
проректор по учебной работе
“ИЗУЧЕНИЕ ЗАКОНОВ НОРМАЛЬНОГО РАСПРЕДЕЛЕНИЯ
И РАСПРЕДЕЛЕНИЯ Релея”
Методические указания к проведению лабораторных работ
Москва
1998г.
Цель работы—исследование законов распределения различных случайных процессов нормального шума, гармонического и треугольного сигналов со случайными фазами, суммы случайных взаимно независимых сигналов, аддитивной смеси гармонического сигнала и шумовой помехи, проверка нормализации распределения при увеличении числа взаимно независимых слагаемых в случайном процессе.
Теоретическая часть
В отличие от детерминированных процессов, течение которых определено однозначно, случайный процесс — это изменение во времени физической величины (тока, напряжения и др.), значение которой невозможно предсказать заранее с вероятностью, равной единице.
Статистические свойства случайного процесса X{t) можно определить, анализируя совокупность случайных функций времени {Xk(t)}, называемую ансамблем реализаций. Здесь k—номер реализации.
Мгновенные значения случайного процесса в фиксированный момент времени являются случайными величинами. Статистические свойства случайного процесса характеризуются законами распределения, аналитическими выражениями которых являются функции распределения. Одномерная интегральная функция распределения вероятностей случайного процесса
|
Здесь P{X(t1)<=x} - вероятность того, что мгновенное Значение случайного процесса в момент времени t1- примет значение, меньшее или равное x
Одномерная дифференциальная функция распределения случайного процесса или плотность вероятности определяется равенством
|
Аналогично определяются многомерные функции распределения для моментов времени t1, t2, ...tn.
Одномерная плотность вероятности мгновенных значений суммы взаимно независимых случайных процессов Z (t) = Y (t) +Х (t) определяется формулой
|
где W1x(x), W1y(y), W1z(z) - плотности вероятности процессов X(t), Y(t), Z(t).
Наиболее распространенными функциями случайного процесса (моментами) являются:
среднее значение (первый начальный момент)
|
дисперсия (второй центральный момент)
|
Для стационарных случайных процессов выполняется условие
Статистические характеристики стационарных случайных процессов, имеющих эродические свойства, можно найти усреднением не только по ансамблю реализаций, но и по времени одной реализации Xk(t) продолжительностью T:
среднее значение
дисперсия
интегральная функция распределения
где
плотность вероятности
где
[x,x+Dx].
Для нормального распределения интегральная функция и функция плотности и вероятности имеют следующий вид:
Описание лабораторной установки
Для выполнения работы необходимо использовать универсальный стенд для изучения законов распределения случайных процессов и электронный осциллограф.
Передняя панель стенда
Стенд включает в себя:
- семь источников независимых случайных сигналов (одного шумового с нормальным распределением, одного треугольного и пять гармонических). Дисперсия случайных сигналов регулируется соответствующими потенциометрами ;
-переключатель исследуемых законов распределения (нормальный, Рэлея);
- переключатель рода работ (для снятия статистических характеристикmx,sx2,а также интегрального F(x) дифференциального W(х) законов распределения);
- регулятор уровня анализа;
- регулятор глубины анализа;
- индикатор уровня выхода;
- индикатор уровня анализа;
- гнёзда для подключения осциллографа;
- гнездо для заземления стенда.
Блок схема стенда
1 - генератор треугольных импульсов;
2 - генератор шума;
3-7 - генераторы гармонических сигналов:
S - сумматор;
ЭП - эммиторный повторитель;
ГПН - генератор постоянного напряжения;
ВС - верхний селектор;
РУ - регулятор уровня;
НС - нижний селектор;
ВУ - вычитающее устройство;
>- усилитель;
ò- интегратор;
И - индикатор;
Э0 - осциллограф.
Принцип работы стенда
Аппаратурный анализ законов распределения осуществляемый в лабораторной установке основан на измерений относительного времени пребывания реализации в заданном интервале значения.
Сумматор позволяет получать сигналы с разными законами распределения.
Требуемый уровень "х" при снятии законов распределения по точках устанавливают с помощью потенциометра “постоянная составляющая". Глубину анализа " х” определяет потенциометр "уровень анализа".
С помощью амплитудных селекторов и формирователей вырабатываются прямоугольные импульсы длительность которых равна времени пребывания входного сигнала ниже порогов селекции. Величина постоянной составляющей на выходе ВС пропорциональна P{X(t)<=x} на выходе НС -P{X(t)<=x-Dx}, на выходеВУ:
Измерение постоянной составляющей осуществляется интегратором, нагрузкой которого является индикатор-прибор магнитно-электрическойсистемы.
Порядок выполнения работы
1. Заземлить стенд и осциллографы.
2. Произвести включение по разрешению преподавателя.
3. Установить переключатель законов распределения в положение "нормальное".
4. Включить генератор шума и установить ручку уровня сигнала в среднее положение.
5. Переключатель рода работ (ПРР) установить в положение "mx" и снять величину математического ожидания.
6.Установить ПРР в положение "s2x" и снять величину дисперсии случайного процесса. (Все значения сводите в таблицу )
7.Установить требуемый уровень "Dx".
8.Установить ПРР в положение F(х) и снять интегральную функцию распределения в зависимости от уровня анализа для значений -3...+4 с шагом 1.
9.Установить ПРР в положение “Wx” и снять зависимость функции плотности вероятности “Wx” от уровня анализа для значений согласно п.8.
10.Отключить генератор шума и включить генератор треугольногосигнала.Повторить пп. 5...9.
11. Выполнить п.10 для одного гармонического сигнала.
12.Включить еще 2 гармонических сигнала и повторить пп.5...9.
13.Включить все 5 генераторов гармоник и генератор треугольного сигнала и повторить пп. 5...9.
14.Установить переключатель законов распределения в положение "распределение Рэлея". Повторить пп. 4...13.
Указания к отчету
Отчет должен содержать:
1) расчеты дисперсий, законов распределения сигналов;
2) функциональную схему анализатора законов распределения;
3) графики рассчитанных и измеренных функций распределения;
4) сравнение теоретических и экспериментальных результатов и анализ возможных источников погрешностей измерения;
5) выводы и оценку полученных результатов.
Контрольные вопросы