Смекни!
smekni.com

Расчет и проектирование вертикального кожухотрубного теплообменника для пастеризации продукта (стр. 4 из 6)

Уточнённое значение скорости движения продукта w,

:

. (2.18)

Расчетная длина одной трубки в трубном пучке L, (м):

(м). (2.19)

Количество ходов теплообменника z:

, (2.20)

принимается z=4 хода по трубному пространству кожухотрубного теплообменника.

Необходимое количество теплообменных труб в трубной решетке n:

n=zn1=4×3=12 труб. (2.21)

Диаметр трубной решетки Dр, (мм):

(мм), (2.22) [4]

Внутренний диаметр кожуха теплообменника D, (мм):

D=t(b-1)+4d=59,4(5-1)+4×30=358 (мм), (2.23)

принимается для изготовления кожуха теплообменника труба Æ360х5 мм.

Живое сечение межтрубного пространства fмт, (м2):

fмт=0,785((D-2s) 2-nd 2)=

=0,785((0,360-2×0,005)2-12×0,032)=87,68×10-3 2). (2.24)

По уравнению объемных затрат V,

:

, (2.25)

определяются диаметры патрубков d, м, для рабочих сред:

. (2.26)

Диаметр патрубка для входа пара в аппарат, dп, (м):

(м).

Диаметр патрубка для выхода конденсата пара, dк, (м):

(м).

Диаметр патрубка для входа продукта в аппарат, dвх, (м):

(м).

Диаметр патрубка для выхода продукта из аппарата, dвих, (м):

(м).

2.3 Гидравлический расчет аппарата

Полное гидравлическое сопротивление теплообменного аппарата, DР (Па):

(2.27) [5]

Для изотермического турбулентного движения в гидравлично - шероховатых трубах (соответственно /6/):

(2.28) [6]

Сумма коэффициентов местных сопротивлений xг в аппарате:

, (2.29) [7]

(Па)

Мощность привода насоса N, (Вт), необходимая для перемещения продукта по трубному пространству теплообменного аппарата:

(Вт) (2.30) [8]

V=

. (2.31)

N=

(Вт).

2.4 Расчеты на прочность

Допустимые напряжения при расчете по предельным нагрузкам емкостей и аппаратов, которые работают при статических одноразовых нагрузках, определяются согласно ГОСТ 14249-89.

Расчет на прочность гладкой цилиндрической обечайки кожуха, нагруженной внутренним избыточным давлением, проводится согласно ГОСТ 14249-89.

Рисунок 11 – Расчетная схема обечайки кожуха теплообменника

Исполнительная толщина стенки обечайки s, (мм):

s³sр+с (2.32) [9]

(мм), (2.33) [10]

с=с123 (2.34) [11]

где с1=Пt=0,1×15=1,5 (мм), (2.35) [12]

с=1,5+0+0=1,5 (мм),

Исполнительная толщина стенки обечайки s, (мм):

s³sр+с=0,41+1,5=1,91 (мм).

Соответственно приведенным в ГСТУ 3-17-191-2000 значений минимальным толщинам стенок обечаек и днищ принимается s=5,0 мм.

Внутреннее избыточное давление, которое допускается [р], (МПа):

(МПа) (2.36)

Условие применения расчетных формул (для обечаек и труб при D (200 мм):

, (2.37)

условие выполняется.

3 Расчеты и выбор вспомогательного оборудования.

3.1 Выбор насоса

В соответствии с технологической схемой участка пастеризации продукта для перекачивания продукта выбирается шесть центробежных насосов марки Х20/18 с параметрами: подача Q= 5,5×10-3

, напор Н= 10,5 (м), частота вращения вала n= 48,3 (с-1), коэффициент полезного действия hн=0,6 , приводной электродвигатель типа АО2-31-2 мощностью Nн=3квт.
Рисунок 12 – Схема установления насоса

Выбранный насос разрешает достичь геометрической высоты подъема жидкости HГ£11 м с учетом потерь напора на преодоление гидравлического сопротивления теплообменного аппарата DР=84453 Па.

3.2 Расчет объема накопительного резервуара и уравнительного бака для пастеризованного продукта.

Номинальный объем емкости накопительного резервуара и уравнительного бака для исходного раствора пастеризованного продукта и конденсата:

3), (3.1) [13]

Выбирается пять горизонтальных емкостных аппарата.


4 Новизна принятых конструктивных решений

Теплообменные аппараты составляют многочисленную группу теплосилового оборудования, занимая значительные производственные площади и превышая зачастую 50% стоимости общей комплектации в теплоэнергетике, химической, нефтеперерабатывающей и пищевой промышленности, и ряде других отраслей. Поэтому правильный выбор теплообменников представляется исключительно важной задачей.

К настоящему времени можно выделить два наиболее распространенных типа теплообменных аппаратов - кожухотрубные и пластинчатые.

Широко известные традиционные кожухотрубные аппараты, обладая рядом преимуществ, вместе с тем имеют и очень существенные недостатки. В частности - неблагоприятные массогабаритные характеристики, низкие показатели надежности. Эти аппараты почти всегда требуют применения грузоподъемного оборудования, предполагают наличие значительных свободных площадей и далеко не всегда могут быть смонтированы, а тем более заменены при ремонте без демонтажа конструкций здания. Применение в этих аппаратах латунных и гладкостенных труб дополняет неприглядную техническую характеристику. Латунь при определенных условиях (которые почти всегда создаются в теплообменниках, применяемых в отоплении и горячем водоснабжении) подвержена обесцинкованию даже в пресной воде. Цинк попадает в воду горячего водоснабжения, кроме того, происходит разрушение стенок труб.

Но даже и когда эти условия не создаются, усиливается влияние другого отрицательного фактора - образование накипи и иных отложений на стенках труб, что приводит к потере работоспособности аппаратов по критерию "тепловая эффективность".

Следует принять во внимание и достаточно высокие цены на эти аппараты вследствие использования большого количества цветного металла.

На сегодняшний день кожухотрубные теплообменники на порядок уступают пластинчатым теплообменникам.

Сравнение пластинчатых теплообменников с кожухотрубными теплообменниками (см. рис.13)

Обычно кожухотрубные теплообменники эффективно используются при давлениях теплоносителя более 25 кгс/см2. Но при давлениях до 25 кгс/см2 пластинчатые теплообменники являются значительно более эффективными.

При аналогичных параметрах пластинчатые теплообменники в 3-6 раз меньше по габаритам и составляют 1/6 от веса кожухотрубных теплообменников. Таким образом, экономятся не только площади под установку, но и снижаются начальные затраты. Конструкция кожухотрубного теплообменника обеспечивает гораздо меньшие коэффициенты теплопередачи, чем пластинчатого при аналогичной потере давления. Даже в самых лучших кожухотрубных теплообменниках значительные поверхности труб находятся в мертвых зонах, где отсутствует теплопередача. В отличие от кожухотрубных пластинчатые теплообменники могут быть легко разобраны для обслуживания и ремонта без демонтажа подводящих трубопроводов. Для обслуживания пластинчатых теплообменников требуется площадь в 3-6 раз меньше, чем для кожухотрубных.

Основные преимущества использования пластинчатых теплообменников.

1. Экономичность и простота обслуживания.

При засорении пластинчатый теплообменник может быть разобран, промыт и собран в течение 4-6 часов. В кожухотрубных теплообменниках процесс очистки трубок часто ведет к их разрушению и заглушению.