Смекни!
smekni.com

Тепловые основы сварки (стр. 1 из 2)

«Тепловые основы сварки»

Введение

Согласно БЭС «Сварка это технологический процесс соединения твердых материалов в результате действия межатомных сил, которое происходит при местном сплавлении или совместном пластическом деформировании свариваемых частей». Современные высокопроизводительные процессы сварки и обработки материала требуют точного назначения технологического режима.

Оценка производительности процессов сварки и обработки материалов, сопутствующих им местных изменений структуры и свойств обрабатываемого материала, а также возникающих в изделии местных деформаций и напряжений, ведущих иногда к образованию трещин, должна основываться на процессах изменения температуры вокруг очага местного теплового и силового воздействия.

Сварочные процессы в металле, определяющие производительность сварки и качество сварных соединений, протекают под действием тепла в условиях быстро меняющейся температуры. Пределы изменения температуры весьма широки: от минус 30 - 40°С при сварке на морозе до температуры испарения металла (около 3000°С для стали). В этом промежутке температур происходят: плавление основного и присадочного металлов, металлургические реакции в жидкой ванне, кристаллизация расплавленного металла, структурные и объемные изменения в наплавленном и в основном металлах. Чтобы управлять этими процессами, необходимо знать, как влияют на них все определяющие параметры, в том числе и воздействие источников тепла, непосредственно выражающееся в изменении температуры металла.

Поэтому представляется вполне логичным выделение «тепловой» подсистемы в качестве основополагающей. Этот принцип, оправдавший себя на практике при моделировании многих высокотемпературных процессов, допускает и теоретическое обоснование: основополагающими причинами всех изменений в установке и деталях являются энергетические взаимодействия, описываемые тепловыми моделями.

Тепловые основы сварки – прикладная научная дисциплина, изучающая источники тепла, нагрев и охлаждение металла и их влияние на протекание перечисленных выше процессов. Тепловые основы сварки содержат данные опыта, обобщенные теорией и обосновывающие инженерный расчет нагрева и охлаждения металла, а также тепловых характеристик процессов сварки. Теория тепловых основ сварки служит одним из средств исследования сварочных процессов и изыскания способов управления ими.

Теория распространения тепла в металлах при сварке служит не только средством математического описания характера теплового возбуждения свариваемых металлов, но и стимулирует математическое описание других физических процессов в металлах при сварке.

Температурное поле однозначно определяет поле температурных деформаций и поле сопротивления свариваемых металлов упругой и пластической деформации, что в совокупности определяет процессы развития напряжений и деформаций. Температурное поле определяет форму осей кристаллитов, следовательно, и микроструктуру металла шва, что влияет на характер распределения деформаций и деформационную способность металла в температурном интервале хрупкости.

ТЕРМИЧЕСКИЕ ЦИКЛЫ СВАРКИ КАК ФАКТОР ПРЕДОПРЕДЕЛЯЮЩИЙ СТРУКТУРУ И СВОЙСТВА СВАРНЫХ СОЕДИНЕНИЙ

Большая часть применяемых на практике видов сварки основана на локальном концентрированном нагреве участков свариваемых изделий до температур плавления или пластического течения. При перемещении сварочного источника температура точек тела изменяется во времени (Рис.1.1). Пока сварочный источник тепла не начал действовать, температура всего тела равна температуре окружающей среды, с которой тело находится в тепловом равновесии. По мере приближения связанного с источником температурного поля температура точек А, В, С быстро возрастает, достигает максимума, а затем постепенно понижается с убывающей скоростью, стремясь к температуре окружающей среды.

Рис. 1.1 Процесс распространения тепла при сварке листов встык:

а - мгновенные температурные поля для моментов времени 0 - 12;

б — изменение температуры в точках тела А, В и С со временем.

Изменение температуры во времени в данной точке тела, вызванное действием подвижного или временным действием неподвижного источника тепла, называется термическим циклом в данной точке.

Термический цикл сварки можно фиксировать с помощью термопар, установленных в определенных точках сварного соединения. На рис. 1.2 приведены результаты измерения термических циклов в околошовной зоне, т. е. на участке основного металла, прилегающем к металлу сварного шва при разных способах сварки: ручной дуговой, под флюсом и электрошлаковой. Каждый термический цикл можно характеризовать скоростью нагрева, максимальной температурой и скоростью охлаждения.

Рис.1.2. Типичные термические циклы околошовной зоны при ручной дуговой сварке (1), сварке под флюсом (2) и электрошлаковой сварке (3).

Стрелкой обозначено влияние теплоты кристаллизации металла сварного шва.

Поскольку форма термического цикла зависит от способа сварки, знание характера термического цикла металла околошовной зоны имеет большое значение.

Для большинства способов сварки характерна почти прямолинейная зависимость температуры от времени на восходящем участке температурной кривой. При охлаждении температурная кривая имеет экспоненциальный характер. У большинства способов дуговой сварки скорость нагрева колеблется в пределах 50—400° С/с. При электрической контактной сварке или сварке лучом лазера скорость нагрева превышает 1000° С/с. При высокой скорости нагрева температура точек А1 и A3 у стали смещается к более высоким значениям. Максимальная температура цикла является важной величиной с точки зрения возможных структурных изменений стали. Максимальная температура нагрева имеет место в расплавленном металле сварного шва. В зоне термического влияния она понижается начиная от линии сплавления.

Подход к оценке процесса охлаждения в термическом цикле может быть различным. Существует мнение, что у большинства конструкционных свариваемых сталей фазовые превращения происходят в интервале температур 800—500° С. Поэтому для характеристики процесса охлаждения используют время охлаждения ∆t8/5 в диапазоне температур 800—500° С в секундах.

От степени нагрева металла и характера распределения теплоты и деформаций в изделии зависят структурно-фазовые превращения, механические, технологические и служебные свойства сварных соединений. Возникновение сварочных напряжений также зависит от цикла нагрева и охлаждения свариваемого изделия. Кроме того, интенсивность протекания тепловых процессов предопределяет такие важные параметры сварочного процесса, как производительность и технико-экономическая эффективность. Таким образом, практически все процессы, протекающие в металлах при сварке, зависят от термических циклов сварки и в значительной степени могут определяться их параметрами. Поэтому в теории сварочных процессов, разрабатываемой отечественными и зарубежными исследователями, важное место отводится вопросам расчетного и экспериментального определения термических циклов сварки.

Важнейшими параметрами термических циклов сварки околошовного участка зоны термического влияния (ЗТВ) сварных соединений сталей, претерпевающих полиморфное превращение, являются следующие: Tmax — максимальная температура цикла; wн — скорость нагрева в интервале температур от температуры критической точки Ас3 до Tmax; τ’, τ” и τ — время пребывания металла выше критической точки Ас3 соответственно при нагреве, охлаждении и суммарное; w8/5, w6/5 — скорости охлаждения в интервалах температур превращения аустенита 800—500 и 600—500 ºС, а также соответствующие этим интервалам температур длительности охлаждения t8/5, t6/5; wmin — мгновенная скорость охлаждения при температуре наименьшей устойчивости аустенита Tmin.

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ В ЗОНЕ ТЕРМИЧЕСКОГО ВЛИЯНИЯ И ИХ РЕГУЛИРОВАНИЕ

Основной металл в зоне термического влияния подвергается своеобразной термической обработке. Структура металла в этой зоне изменяется в соответствии с термическим циклом нагрева и охлаждения. При данном термическом цикле характер изменений структуры зависит от химического состава основного металла и его предшествующей термической и механической обработки. Термические циклы слоев зоны, различно удаленных от границы зоны проплавления, неодинаковы, поэтому сварное соединение представляет собой агрегат слоев с неоднородной структурой и механическими свойствами.

Околошовная зона образуется при всех видах электрической сварки плавлением. Ширина ее изменяется в зависимости от способа и режима сварки, состава и толщины основного металла. Меньшей ширине околошовной зоны соответствуют условия сварки, характеризуемые большим перепадом температур.

Схема строения околошовной зоны приведена на рис. 1.3. Металл первого участка околошовной зоны (зона сплавления), примыкающий непосредственно к металлу шва, находился в твердо-жидком состоянии. Участок имеет сравнительно небольшую ширину (0,1—0,4 мм) и отличается от соседних участков основного металла. Эти изменения вызваны диффузионными процессами, протекающими в процессе сварки в зоне сплавления. Направление диффузии элемента определяется коэффициентом распределения в твердой и жидкой фазах, а также содержанием элемента в основном металле и сварочной ванне. В зависимости от соотношения этих величин диффузия элемента может происходить из основного металла в металл шва или из металла шва в основной металл. При сварке сталей малоуглеродистой проволокой происходит перемещение элементов из основного металла в металл шва.