Смекни!
smekni.com

Системы подчиненного управления (стр. 1 из 5)

Введение

В настоящее время наиболее распространенными и массово выпускаемыми промышленностью являются системы управления электроприводом, построенные по принципу подчиненного управления. По сравнению с предшествующими им системами они обладают большим быстродействием, выполнены на базе унифицированных элементов, что облегчает проектирование и сборку. Хотя в наши дни существуют системы управления, обеспечивающие лучшие показатели, системы подчиненного управления все еще актуальны.

Принципы подчиненного управления позволяют соединить систему управления с объектом независимо от того, используется ли в нем система ТП-Д, Г-Д либо иной управляемый преобразователь. Большая инерционность электромашинных устройств компенсируется, возможно ограничение динамических токов на заданном уровне.

Целью данной курсовой работы является расчет позиционной системы подчиненного управления со следующими параметрами: статизм скоростного контура — не более 5%; диапазон регулирования — 300¸1; момент инерции на валу 0.8JДВ.

Двигатель типа П143–4К со следующими паспортными данными:


РН = 200 кВт;

UН = 600 В;

IН = 360 А;,

nН = 500 об/мин;

2р = 4;

rЯ = 0.05196 Ом;

rК = 0.03125 Ом;

rД = 0.00834 Ом;

rВ = 3.9 Ом;

JД = 42.75 кг×м2.


1 Выбор схемы и расчет тиристорного преобразователя

Как известно, из всех способов регулирования и изменения направления скорости, использование реверсивного тиристорного преобразователя (РТП) является одним из самых современных способов создания быстродействующего регулируемого электропривода постоянного тока. Реверсивным тиристорным преобразователем называется преобразователь, через который ток может протекать в обоих направлениях. Поскольку тиристоры пропускают ток только в одном направлении, то для изменения направления тока нагрузки необходимо использовать две группы вентилей, каждая из которых проводит ток в своем направлении. Эти группы вентилей чаще всего собираются по трехфазной мостовой или трехфазной нулевой схеме. Трехфазная нулевая схема отличается простотой, меньшим числом вентилей, применяемых в схеме. Трехфазная мостовая схема обладает рядом преимуществ по сравнению с трехфазной нулевой:

1) Выпрямленная ЭДС при одном и том же вторичном напряжении трансформатора в два раза больше;

2) Пульсации выпрямленной ЭДС в два раза больше по частоте и меньше по амплитуде;

3) Вентильные группы могут подключаться к сети без трансформатора;

4) Типовая мощность трансформатора меньше.

Перечисленные достоинства обуславливают преимущественное применение трехфазной мостовой схемы в системах электропривода (ЭП) мощностью десятки — сотни киловатт. Поскольку мощность ТП, питающего якорную цепь, достаточно велика, то выбираем трехфазную мостовую схему.

Как было отмечено выше, для получения реверсивного ТП две группы вентилей определенным образом соединяют между собой. Различают встречно–параллельное и перекрестное соединение. При встречно–параллельном соединении применяется простой двухобмоточный трансформатор меньшей мощности. Преимущество перекрестной схемы в том, что в данной схеме аварийные процессы при одновременном включении тиристорных групп протекают легче, поэтому эту схему целесообразно применять в ответственных ЭП. На основании этого выбираем встречно–параллельное соединение выпрямительных групп.

Применяются два основных метода управления комплектами РТП: совместное и раздельное. При совместном управлении импульсы подаются на тиристоры обеих групп одновременно. При этом одна группа работает в выпрямительном режиме с углом регулирования aВ, развивает среднее значение выпрямленного напряжения UaВ и обеспечивает протекание тока через нагрузку. В это же время вторая группа переводится в инверторный режим с углом регулирования aИ и среднее значение выпрямленного напряжения UaИ. При таком управлении в РТП образуется замкнутый контур, по которому может протекать уравнительный ток. Для уменьшения этого тока углы регулирования должны быть в определенном соотношении. При согласованном управлении соотношение углов устанавливается таким образом, чтобы выполнялось соотношение:

. Это равенство выполняется при условии
. При этом способе управления в уравнительном контуре протекает прерывистый ток, среднее значение которого называют статическим уравнительным током и ограничивают до допустимого уравнительными реакторами. Для уменьшения уравнительного тока применяют несогласованное управление группами тиристоров в РТП. При этом соотношение углов управления:
. При этом в уравнительном контуре всегда имеется постоянная составляющая напряжения, направленная против проводимости тиристоров, поскольку инверторная группа развивает большее напряжение, чем выпрямительная. Это приводит к резкому уменьшению статического уравнительного тока, хотя динамический уравнительный ток уменьшается незначительно. Необходимо отметить также то, что протекание небольшого уравнительного тока благоприятно сказывается на статических характеристиках ТП. Таким образом, преимущества совместного управления:

1) Отсутствие необходимости в переключениях силовой цепи;

2) Высокое быстродействие при переходе с одного режима в другой и постоянная готовность к этому переходу;

3) Однозначность в статических характеристиках ТП.

В разрабатываемом преобразователе применим совместное управление вентильными группами.

Для управления ТП в настоящее время применяют главным образом безинерционные системы фазового управления с пилообразным или синусоидальным опорным напряжением. Достоинством синусоидальной формы опорного напряжения является линейность результирующей характеристики ТП. Однако диапазон регулирования угла a составляет менее 180О, так как практически следует исключить из зоны регулирования окрестности минимума и максимума опорного напряжения, где оно практически не изменяется. Кроме того, сохранение строго синусоидальной формы опорного напряжения представляет значительные трудности. Поэтому в разрабатываемом ТП применим пилообразное опорное напряжение.




1.1 Определение ЭДС условного холостого хода тиристорного преобразователя

Падение напряжения на сглаживающем и уравнительных реакторах:

Классификационное падение напряжения на тиристоре при номинальной нагрузке принимаем:

Напряжение спрямления ВАХ тиристора:

Допустимый ток вентилей:

Динамическое сопротивление тиристора:

Среднее значение падения напряжения на тиристоре:

Падение напряжения на обмотках трансформатора:

Коммутационное падение напряжения:

Запас по напряжению тиристорного преобразователя, необходимый для выполнения настройки контура на модульный или симметричный оптимум:

Возможные колебания напряжения от нестабильности питающей сети составляют:

ЭДС условного холостого хода тиристорного преобразователя:

1.2 Расчет параметров силового трансформатора

Линейное напряжение на вторичной обмотке силового трансформатора:

Фазное напряжение на вторичной обмотке силового трансформатора:

Действующее значение тока вторичной обмотки:

Действующее значение тока первичной обмотки:

Мощность на первичной и вторичной сторонах трансформатора и габаритная мощность трансформатора, имеющего одну первичную и одну вторичную обмотки:

Мощность трансформатора, имеющего одну первичную и две вторичные обмотки:


Выбираем трансформатор типа ТМ-400/10 со следующими параметрами:

PHTP = 400 кВА; U2Л = 0.69 кB; UC = 10 кB; I2H = 1004 A;

DPXX = 960 Вт; DPКЗ = 5700 Вт; UКЗ% = 4.5 % IXX% = 2.55%