Смекни!
smekni.com

Определение напряжений в элементах конструкций электротензометрированием (стр. 1 из 2)

Отчет по лабораторной работе «Определение напряжений в элементах конструкций электротензометрированием»

Цель работы: изучение методики и экспериментальное определение напряжений в элементах конструкций электротензометрированием; сравнение расчетных и экспериментальных значений напряжений.

Экспериментальное определение напряжений проводится при создании, сдаче в эксплуатацию или после определенного срока работы ответственных конструкций с целью оценки их прочности. Устройства, преобразующие механические величины в электрические, называются датчиками (деформации -(тензорезистор), линейных или угловых перемещений, давлений, усилий, скоростей, ускорений).

Тензорезистор (рис. 9.4) представляет собой плоскую петлеобразную спираль 1 из тонкой (0,01...0,03 мм) константановой (60 % меди и 40 % никеля) проволоки, вклеенной между двумя слоями рисовой бумаги 2. Рабочий тензорезистор наклеивается (клей БФ) на деталь и при ее нагружении деформируется совместно. При статическом нагружении рабочие тензорезисторы подключаются к измерителю деформации (цифровому) ИДЦ, электрическая схема которого (рис. 9.5) представляет собой высокочувстви-тельный измерительный четырехплечий мост Ч.Уитстона(1844).


Рис. 9.5. Электрическая схема ИДЦ

Постановка работы. На экспериментальной установке (рис. 9.6) проведены испытания ЭК в виде стальной = 2 * 105 МПа; µ = 0,3) трубы (D= 60 мм; d= 54 мм; L = 360 мм; l = 300 мм) при плоском изгибе, кручении и совместном изгибе с кручением с записью (табл. 9.3) ступеней рабочей нагрузки Р и показаний т измерителя деформаций цифрового ИДЦ (цена деления β= 10-5 1/дел.).

Рис. 9.6. Схема экспериментальной установки: 1- элемент конструкции; 2 - опора; 3 - коромысло; 4, 5 - грузы; 6 -блок; 7-прямоугольная розетка тензорезисторов; I, II, III - рабочие тензорезисторы


№ступени нагружения Р,кН ΔР,кН Изгиб Кручение Изгиб с кручением
m1 Δm1 m11 Δm11 m1 Δm1 m11 Δm11 m111 Δm111
0 0.9 - 23 - 25 - 22 - 20 - -7 -
1 1.8 0.9 45 22 49 24 45 23 39 19 -14 -7
2 2.7 0.9 67 22 74 25 67 22 61 22 -22 -8
3 3.6 0.9 89 22 99 25 89 22 81 20 -28 -6
4 4.5 0.9 113 24 124 25 111 22 100 19 -34 -6
ΔPср=0,9 Δm1ср=22,5 Δm11ср=24,75 Δm1ср=22,25 Δm11ср=20 Δm111ср=-6,75

Требуется: определить расчетные и экспериментальные значения напряжений; вычислить отклонения расчетных от экспериментальных напряжений.

Проводим обработку экспериментальных данных табл. 9.3 и определяем

средние значения приращений нагрузки ΔPср =∑ΔР/4 и показаний ИДЦ:

Δmср =∑Δm/4.

В дальнейшем все расчеты проводятся для одной ступени нагружения.

Опыт № 1. Определение напряжений при изгибе элемента конструкции

1. Вычисляем расчетное приращение напряжений в точке А при изгибе:

Δσ =


2. Рабочий тензорезистор I наклеен по направлению главной деформации Δε1, и находится в условиях линейного напряженного состояния. Определяем экспериментальные приращения главной деформации и главного напряжения:

Δε1срβ=22,2*10-5; Δσэ=EΔε=2*10-5=45 Мпа

3. Находим отклонение расчетных от эксперементальных напряжений:

δ=

*100%=44,4*45/45*100%= -1,33

4. Для оценки прочности элемента конструкции определяем экспериментальное значение напряжений при максимальной нагрузке:

maxσэ= ΔσэPmax/ΔP=45*4.5/0.9=255МПа

Опыт № 2. Определение напряжений при кручении элемента конструкции

1. Вычисляем расчетные приращения касательных напряжений в точке А:

Δτ =(2*0,9*103*300*10-3)/14,58*10-6=37 МПа

2. При кручении элемента конструкции реализуется частный случай плоского напряженного состояния, когда главная деформация Δε = - Δε. Главную деформацию Δε1 измеряет рабочий тензорезистор II, наклеенный под углом 45. Определяем экспериментальные приращения главных деформаций:

Δε1э= Δm11cрβ=24,75*10-5; Δε=-24,75

3. Находим экспериментальные приращения касательных напряжений, которые при кручении равны приращениям главных напряжений:

Δτэ=(2*105\1+0.3)*24,75*10-5=38 МПа

4. Определяем отклонение расчетных от экспериментальных напряжений:

δ=((37-38)/38)*100%=-2,63

5. Для оценки прочности при кручении элемента конструкции находим экспериментальное значение касательных напряжений при максимальной нагрузке:

maxτэmax=38*4,5/0,9=190 МПа.

Опыт № 3. Определение напряжений при совместном изгибе и кручении элемента конструкции

1. Вычисляем расчетные приращения нормальных, касательных, главных и эквивалентных напряжений в точке А:

Δσ = (0,9*103*360*10-3)/7,29*10-6=44,4 МПа

Δτ = (0,9*103*300*10-3)/14,58*10-6=18,5 МПа

Δσ1/3=0,5(44,4

)=(22,2
28,9) МПа

Δσ1=51,1МПа ; Δσ3= -6,7 МПа

Их направление t

g2α=

= -
=-0.833; 2α0=-39,8; α0=-19,9

Δσэкв4=

=54,8 МПа

2. По трем показаниям ИДЦ прямоугольной розетки тензорезисторов ходим эксперимен-тальные приращения деформаций:

Δε=Δm1 срβ=22,25*10-5 ; Δε11э = Δm1 1срβ = 20*10-5; Δε111э= Δm11 1срβ=-6,75

3. Вычисляем экспериментальные приращения главных деформаций и их направление:


Δε1/3э=0,5(22,25*10-5+(6,75)*

*10-5

2=7,75*10-5
18,98*10-5

Δε1э=26,73*10-5 ; Δε=-11,23*10-5

tg2α=(22.25 *10-5-2*20*10-5+(-6.75*10-5)/22.25*10-5-(-6.75*10-5)=-0.844

С учетом этого 2α0=-40,2 ; α0=-20,1