Смекни!
smekni.com

Процедура расчета и создания стержней с заданными характеристиками (стр. 3 из 4)

что удовлетворяет требованию, и для которого

см2

Двутавр. По ГОСТ 8239-89 выбираем двутавр № 55 для которого

=2035 см3, A3=118 см2.

Три швеллера. По ГОСТ 8240-89 выбираем три швеллера № 36, для которых

=3·601=1803 см3, A4=3·53,4=160,2 см2.

Неравнобокие уголки. Они находятся подбором, так как в сортаменте не даны значения момента сопротивления. Использую формулу

Сделав несколько попыток, выбираем восемь уголков 250´160´16 для которых

см3

A5=8·63б6=508,8 см2

Оценка экономичности подобранных сечений

Масса балки определяется как произведение плотности материала на ее объем m=rAl , т.е. расход материала при прочих равных условиях зависит только от площади поперечного сечения А. Сравнивая массы балок

m1 : m2 : m3 : m4 : m5 = A1 : A2 : A3 : A4 : A5 = 1 : 0,68 : 0,2 : 0,28 : 0,89 заключаем, что самым неэкономичным является круглое сечение. При замене круга другими формами (прямоугольник, двутавр, три швеллера, восемь уголков) достигается экономия, равная соответственно 32%, 80%, 72% и 11%.

Исследование напряжений в опорном сечении для балки двутаврового профиля № 55 (рис. 7,а), параметры которой по ГОСТ 8239-89 равны:

h=55 см, b=18 см, d=1,1 см, t=1,65 см, Ix=55962 см4, Sx=1181 см3

Внутренние силовые факторы в опорном сечении А:

QA = 4qa=4·15·1,2 = 72 кН

MA = – 14qa2 = – 14·15·103·1,22 = – 302,4 кН·м

Эпюра σ. Нормальные напряжения в поперечном сечении изменяются по линейному закону

Вычисляем напряжения в крайних точках и строим эпюру σ (рис. 7,б)

Эпюра τ. Она строится по формуле Журавского

Находим значения τ в 4 характерных точках по высоте сечения (необходимые вычисления представлены в табл. 3) и строим касательные напряжения (рис. 7,в)

Таблица 3 – Вычисления касательные напряжений в характерных точках

№ точек bi,мм
, см3
, МПа
1,1΄ 18 0 0 0 0
МПа
2,2΄ 18 792 44 0,04 0,6
3,3΄ 1,1 792 720 0,7 9,3
4 1,1 1181 1073,6 1 14

Определение главных напряжений в точке К (yк /h= – 0,1):

– напряжение в поперечном сечении

МПа

МПа

– величины главных напряжений

σ1 = 35,25 МПа

σ3 = – 5,25 МПа

– ориентация главных площадок


21º

Экстремальные касательные напряжения равны по величине

МПа

и действуют на площадках, равнонаклоненных к осям 1 и 3.

3.2 Выбор материала

Согласно схеме нагружения (рис. 9,а), подобрать сечение балки (рис. 10), изготовленной из материала, неодинаково работающего на растяжение и сжатие.

Принять: М = 4qa2 кН·м, F = 2qaкН, q= 15 кН/м, а = 1,2 м,

[σр] = 40 МПа, [σс] = 70 МПа

Решение

1. Определение опорных реакций и построение эпюр Qx и Mx.

ΣmB=0

RA4a - 2qaa - 4qa2- q3a3,5a = 0

RA = 4,125qa

ΣYi=0

RA - 2qa - q3a+ RB = 0

RB =0,875qa

Эпюра Qy. Строится по формуле

Q = Q0 ± qz

В данном случае берем знак «минус», так как погонная нагрузка направлена вниз. Находим значения поперечной силы в характерных точках и строим ее эпюру (рис. 9,б)

QС = 0

QCA = QC–qa= – qa

QA = QCA + RA = – qa + 4,125qa = 3,125qa

QAF = QA – 2qa = 3,125qa – 2qa = 1,125qa

QFD = QAF= 1,125qa

QD = QFD – 2qa = 1,125qa – 2qa = – 0,875qa

QDB = QD= – 0,875qa

QB = QDB + RB = – 0,875qa + 0,875qa = 0

Эпюра Mx. Строится по формуле

Mx = M0 + Q0Z – 0,5qz2

Изгибающий момент изменяется по квадратичному закону на участке CA и AF (q=const) и по линейному закону – на участках FD и DB (q=0). Вычисляем значения в характерных точках и строим эпюру (рис. 9,в)

MС = –4qa2

MA = MС –

qa2 = – 4qa2 – 0,5 = – 4,5qa2

MF = MA +

qa2 = – 10qa2+ 4qa2 = – 6qa2

MD = MF + 1,125qa2 = – 0,25qa2+ 1,125qa2 = 0,875qa2

MB = MD – 0,875qa2 = 0,875qa2+ 0,875qa2 = 0

Расчетный изгибающий момент равен

Mрас = |MA| = 4,5qa2 = 4,5·15·103·1,22 = 97,2 кН·м

Геометрические характеристики сечения

Положение центра тяжести.

Необходимые вычисления представлены в табл. 4.

Таблица 4 – Положение центра тяжести

№ п/п υi Ai υi Ai
1 2t 8t2 16t3
2 t – 3t2 – 3t3
Σ 5t2 13t3

Момент инерции относительно главной центральной оси.

Предварительно определим моменты для элементов сечения относительно собственных центральных осей, а последующие вычисления выполним в табличной форме (табл. 5)

Таблица 5 – Момент инерции

№ эл-в yi Ai
yi=υi – υc
1 –0,6t 8t2 10,7t4 2,88t4
2 –1,6t –3t2 –1,5t4 –7,68t4
Σ 9,2t4 –4,8t4
4,4t4

Момент сопротивления

Поскольку материал хуже работает на растяжение, то с точки зрения наиболее эффективного его использования профиль следует расположить так, чтобы более тонкий слой толщиной h2 испытывал растяжение в опасном сечении А. В этом сечении растяжение возникает в верхней части балки, поэтому профиль следует расположить полостью вниз.

Подбор сечения балки.

Находим необходимые размеры:

– из условия прочности на растяжение

мм

– из условия прочности на сжатие

мм

Принимаем большее значение t= max { tр , tс} = 113 мм.

В опорном сечение D изгибающий момент меньше расчетного. Поэтому здесь нужно проверить прочность балки на растяжение. Находим

МПа

Т.к. перенапряжение составляет 15,4%, что недопустимо, принимаем t =200 мм

МПа

В этом случае перенапряжение составляет 2,78%, что допустимо, т.к. 2,78% < 5%, следовательно прочность балки при найденных размерах будет обеспечена.

Создание стержня определенной жесткости

Подобрать сечение балки (рис. 11,а), удовлетворяющее условиям прочности и жесткости. Допускаемое напряжение материала определяется исходя из диаграммы растяжения материала (задача 1.3). Исследование перемещения выполнить двумя способами:

– пользуясь методом начальных параметров, определить прогибы и углы поворота сечений балки с координатами z = 0, a, 2a, 3a, 4a, 5a; изобразить изогнутую ось балки и показать на ней найденные перемещения;