Смекни!
smekni.com

Теорія доменної плавки (стр. 3 из 3)

Мал. 3.1 - Залежність витрати агломерату від міри металізації окатишів

Підвищення витрати вапняку при збільшенні міри металізації окатишів пояснюється тим, що у окатишів основність менше ніж у агломерату. Це призводить до збільшення витрати сирого вапняку.

Завантаження в піч неофлюсованих окатишів більше 35 % негативно позначається на техніко-економічних показниках, оскільки збільшення витрати вапняку призводить до підвищення витрати коксу і зниження продуктивності (мал. 3.2).

Мал. 3.2 - Залежність витрати флюсу від міри металізації окатишів

Вищий вміст заліза в окатишах, чим в агломераті, в середньому на 6,5 %, і менший зміст порожньої породи призводять до зниження виходу шлаку (мал. 3.3)

Мал. 3.3 - Залежність виходу шлаку від міри металізації окатишів


Зі збільшенням міри металізації окатишів зменшується кількість порожньої породи і, отже, підвищується основність шлаку (мал. 3.4).

Мал. 3.4 - Залежність основності шлаку від міри металізації окатишів

Найважливішим показником доменної плавки, що характеризує економічність роботи доменної печі, є питома витрата коксу. Ця величина не лише безпосередньо впливає на продуктивність печі, але і є показником використання теплової і хімічної енергії в робочому просторі печі.

При збільшенні міри металізації окатишів витрата коксу знижується, що пояснюється підвищенням змісту заліза в шихті, зниженням витрати флюсу і, як наслідок, зниженням виходу шлаку.

Залежність витрати коксу від міри металізації окатишів представлена на мал. 3.5.


Мал. 3.5 - Залежність витрати коксу від міри металізації окатишів

Зниження витрати коксу, у свою чергу, призводить до зниження витрати дуття (мал. 3.6) і середньої міри використання Н2 і З (рис.3.7).

Мал. 3.6 - Залежність витрати дуття від міри металізації окатишів


Мал. 3.7 - Залежність міри використання Н2 і З від міри металізації окатишів

Зі збільшенням міри металізації окатишів збільшується об'єм колошникового газу внаслідок збільшення об'єму СО2 із-за збільшення витрати флюсу (мал. 3.8).

Мал. 3.8 - Залежність об'єму колошникового газу від міри металізації окатишів


Збільшення об'єму колошникових газів веде до зниження їх температури (мал. 3.9).

Мал. 3.9 - Залежність об'єму колошникового газу від міри металізації окатишів

Зі збільшенням міри металізації окатишів сумарна витрата тепла зменшується, що пов'язано зі зниженням витрати коксу (мал. 3.10).

Мал. 3.10 - Залежність об'єму колошникового газу від міри металізації окатишів


При мірі металізації окатишів рівної 0 % інтенсивність ходу складала 921,13 кг/м3·сут, а при 40 % склала 921,50 кг/м3·сут, тобто збільшилася на 0,37 кг/м3·сут. Це пов'язано зі зменшенням об'єму проплавляемой шихти і збільшенням газопроникності (мал. 3.11).

Мал. 3.11 - Залежність інтенсивності ходу (по сумарному вуглецю) від міри металізації окатишів

Коефіцієнт використання корисного об'єму (КИПО) доменних печей залежить від двох показників: витрати коксу на 1 т чавуну і інтенсивності горіння вуглецю. Відносна витрата коксу є показником економічності роботи доменної печі, а інтенсивність горіння вуглецю - показником форсування печі.

При збільшенні міри металізації окатишів в шихті КИПО знижується, оскільки зменшаться об'єм шихти, необхідний для виплавки 1т чавуну у зв'язку зі збільшенням змісту заліза в шихті (мал. 3.12).


Мал. 3.12 - Залежність КИПО від міри металізації окатишів


ВИСНОВОК

1. Встановлена можливість підвищення виробництво доменних печей і зниження витрати коксу при використанні в шихті металізованих окатишів.

2. У умовах, що мають місце в доменних печах, відновлення окислених окатишів відбувається з більшою швидкістю, чим частково металізованих. Процес відновлення окислених окатишів супроводжується зниженням їх міцності.

3. Металізовані окатиші можна зберігати у відкритих складах довгий проміжок часу.

4. Збільшення міри металізації шихти призводить до значних змін співвідношення типів відновних процесів в доменній печі.

5. Підтверджено, що ефективність металізації залізорудної сировини проявляється при роботі доменної печі на високих параметрах комбінованого дуття у меншій мірі, чим при помірному збагаченні дуття киснем.


Список літератури

1. Телегин А.С., Кудрявцев В.С., Пчелкин С.А. Використання металізованих окатишів в доменних печах // Доменне виробництво. Серія 4. - М.: ЦНИИЧермет. - 1970. - 28 с.

2. Дияконів Н.С. Бюл. ЦНИИЧМ. - 1957, № 13-14.

3. Жураковский та ін. - Сталь. - 1968, № 5.

4. Базилевич С.В. та ін. Методи експериментального дослідження доменного процесу. - Свердловськ: Металлургиздат. - 1960. - 126 с.

5. Стефанович М.А. Аналіз ходу доменного процесу. - М.: Металлургиздат, - 1960. - 286 с.

6. Рамм А.Н. Сучасний доменний процес. - М.: Металургія - 1980. - 303 с.

7. Юсфин Ю.С., Даныпин В.В., Пашков Н.Ф. Теорія металізації залізорудної сировини. - М.: Металургія. - 1982. - 265 с.


Додаток А

Вихідні машинні дані





Додаток Б

Результати розрахунку

Показники Усл.обоз. Міра металізації окатишів, % Ед.ізм.
0 100 200 300
1 2 3 4 5 6 7
Розрахунок шихти
Орієнтовна витрата агломерату У1 1235,90 1220,57 1205,50 1189,99 кг
Сумарний прихід сіркиз шихтою в доменну піч У2 9,395 9,377 9,362 9,345 кг
Основність шлаку (СаO+MgO)/SiO2) УЗ 1,346 1,347 1,347 1,348
Орієнтовний зміст SiO2 вШлаку У4 0,371 0,371 0,371 0,371 кг/кг
Орієнтовна кількість SiO2, якавноситься шихтою У5 195,56 194,156 192,780 191,362 кг
Орієнтовний вихід шлаку У6 527,5 523,5 519,782 515,855 кг
Точна витрата агломерату У7 1235,85 1220,57 1205,50 1189,99 кг
Кількість SiO2, яка вноситься шихтою У8 207,75 206,348 204,991 203,55 кг
Кількість Сао, якавноситься шихтою У9 179,24 177,434 175,653 173,82 кг
Кількість MgO, якавноситься шихтою У10 21,907 121,766 21,627 21,48 кг
Кількість Al2O3, якавноситься шихтою У11 30,96 30,751 30,544 30,331 кг
Необхідне для ошлакування SiO2 орієнтовна кількість (Сао+МgО) в шлаку У12 262,187 260,402 258,655 256,852 кг
Витрата флюсу У13 114,657 114,966 115,291 115,617 кг
Прихід марганцю з матеріалами шихти У14 13,499 13,453 13,408 13,361 кг
Вміст марганцю в чавуні У15 0,009 0,009 0,009 0,009 %
Зміст МпО в шлаку У16 6,08 6,02 5,96 5,91 кг
Зміст Al2O3 в шлаку У17 5,87 5,87 5,87 5,88 %
Кількість сірки в чавуні і шлаку У18 8,977 8,96 8,95 8,93 кг
1 2 3 4 5 6 7
Повна основність шлаку У19 1,377 1,378 1,378 1,379
Коефіцієнт розподілу сірки при tшл =1450оС У20 40,865 40,917 40,971 41,026
Зміст сірки в шлаку У21 0,020 0,017 0,017 0,017 кг/кг
Кількість сірки в шлаку У22 8,726 8,708 8,693 8,676 кг
Кількість сірки в чавуні У23 0,251 0,252 0,253 0,254 кг
Зміст сірки в чавуні У24 0,025 0,025 0,025 0,025 %
Кількість FеО в шлаку У25 1,582 1,571 1,559 1,248 кг
Прихід фосфору з матеріалами шихти У26 0,769 0,764 0,759 0,755 кг
Вміст фосфору в чавуні У27 0,076 0,076 0,075 0,075 %
Кількість SiO2 в шлаку У28 196,002 194,603 193,231 191,816 кг
Кількість Сао в шлаку У29 240,651 239,009 237,403 235,745 кг
Кількість MgO в шлаку УЗО 23,203 23,065 22,930 22,790 кг
Кількість Al2O3 в шлаку У31 31,270 31,061 30,856 30,643 кг
Кількість МпО в шлаку У32 6,167 6,113 6,059 6,004 кг
Кількість FеО в шлаку УЗЗ 1,984 1,973 1,963 1,952 кг
Кількість сірки в шлаку У34 8,818 8,800 8,785 8,769 кг
Вихід шлаку УЗ5 503,688 500,225 496,833 493,334 кг/т
Зміст SiO2 в шлаку У36 38,90 38,90 38,892 38,882 %
Зміст Сао в шлаку УЗ7 47,778 47,780 47,783 17,786 %
Зміст MgO в шлаку УЗ8 4,61 4,61 4,61 4,62 %
Зміст Al2O3 в шлаку У39 6,21 6,21 6,21 6,21 %
Зміст МgО в шлаку У40 1,22 1,22 1,22 1,22 %
Зміст FеО в шлаку У41 0,39 0,39 0,395 0,396 %
Зміст сірки в шлаку У42 1,75 1,75 1,76 1,77 %
1 2 3 4 5 6 7
Сумарне винесення матеріалів шихти У43 67,76 67,27 66,79 66,31 кг/т
Сумарна волога матеріалів шихти У44 17,39 17,38 17,37 17,36 кг/т
Витрата шихти з вологою і винесенням У45 2416,99 2400,89 2385,19 2368,97 кг/т
Коефіцієнт розподілу сірки LS 66,64 66,72 66,81 66,90
Розрахунок кількості дуття
Вуглець природного газу m1 57,568 57,568 57,568 57,568 кг
Вуглець мазуту m2 0 0 0 0 кг
Вуглець коксу 408,040 407,495 407,078 406,601 кг
Сумарний прихід З m4 470,635 470,030 469,552 469,013 кг
Вуглець чавуну m5 42,42 42,42 42,42 42,42 кг
Вуглець на відновлення кремнію 4,848 4,848 4,848 4,848 кг
Вуглець на відновлення марганцю m7 0,19 0,19 0,19 0,19 кг
Вуглець на відновлення фосфору і сірки в чавуні m8 4,009 3,998 3,988 3,977 кг
Вуглець на пряме відновлення важковідновлюваних елементів m9 9,047 9,036 9,025 9,014 кг
Вуглець на пряме відновлення важковідновлюваних елементів m10 72,529 72,529 72,529 72,529 кг
Втрати вуглецю m11 0,02 0,02 0,02 0,02 кг
Сума витратних статей вуглецю, окрім Сф m12 124,016 124,005 123,995 123,984 кг
Вуглець, який згорає на фурмах m13 346,619 346,025 345,558 345,029 кг
Вміст кисню у вологому дутті m14 0,254 0,254 0,254 0,254 м3/ м3
Кількість О2 у вологому дутті m15 322,392 321,838 321,403 320,911 м3
Витрата вологого дуття m16 1270,76 1268,578 1266,864 1264,925 м3
Витрата дуття m17 1252,227 1250,077 1248,388 1246,470 м3
Кількість окисленого заліза m18 940,196 940,196 940,196 940,196 кг/т
Розрахунок колошникового газу
Кількість водню в природному газі U1 205,8 205,8 205,8 205,8 м3
Кількість Н2 в дутті U2 18,807 18,775 18,750 18,721 м3
1 2 3 4 5 6 7
Кількість водню в органічнихз'єднаннях коксу U3 1,571 1,669 1,667 1,665 м3
Кількість водню в летких речовинах U4 18,280 18,256 18,237 18,216 м3
Кількість водню в мазуті U5 0 0 0 0 м3
Кількість водню в додатковому газі U6 0 0 0 0 м3
Сумарний прихід водню U7 244,557 244,500 244,454 244,402 м3
Кількість кисню з Fe2O3 шихти U8 232,582 207,951 183,776 158,478 м3
Кількість кисню з FеО шихти U9 28,782 45,108 61,370 78,289 м3
Кількість кисню з Mn2O3 шихти U10 1,534 1,534 1,534 1,534 м3
Кількість киснюнепрямого відновлений. U11 195,204 186,899 178,986 170,607 м3
Сума водню і З, що беруть участь внепрямому відновлений. U12 390,408 373,798 357,973 341,214 м3
Кількість Із за рахунок окислення вуглецю U13 799,298 798,167 797,276 796,270 м3
Кількість Із з летких речовин коксу U14 1,015 1,013 1,012 1,011 м3
Кількість Із з додаткового газу U15 0 0 0 0 м3
Загальна кількість З, що утворюється в печі U16 800,313 799,181 798,289 797,281 м3
Середня міравикористання Н2 і З U17 0,374 0,358 0,343 0,328
Витрата Н2 на непряме відновлення U18 91,378 87,569 83,921 80,056 м3
Кількість водню в колошниковому газі U19 153,181 156,931 160,533 164,346 м3
Кількість води, що утворюється в результ. непрямого відновлений. U20 73,429 70,368 67,436 64,331 кг
Кількість кисню мазуту U21 0 0 0 0
Кількість кисню, що відняла воднем принепрямому відновленні U22 45,689 43,784 41,960 40,028 кг
1 2 3 4 5 6 7
Кількість СО2 в колошниковому газі U 2З 323,420 310,682 298,572 285,744 м3
Кількість З в колошниковому газі U24 501,282 512,951 524,237 536,124 м3
Кількість азоту в колошниковому газі U25 940,033 938,418 937,150 935,714 м3
Об'єм колошникового газу U26 1917,916 1918,983 1920,491 1921,928 м3/т
% Н2 в колошниковому газі U27 7,987 8,178 8,359 8,551
% СО2 в колошниковому газі U28 16,867 16,190 15,547 14,868
% З в колошниковому газі U29 26,137 26,730 27,297 27,895
%N2 в колошниковому газі U30 49,013 48,902 48,797 48,686
Нев'язка балансу 0,19135 0,19800 0,19802 0,20027
Розрахунок температури колошникового газу
Середня температура шихти XI 230,8 230,2 229,3 228,4 °С
Водяний еквівалент шихти Х2 557,4 549,4 545,7 541,9 кДж/ град
Водяний еквівалент газу Х3 692,4 698,5 687,2 684,6 кДж/ град
Різниця міжтемпературою шихтиі газу Х4 668,03 668,84 670,67 671,54 °С
Температура колошникових газів Х5 395,88 386,88 382,29 372,25 оС
Об'єм фурмених газів Р1 1810,59 1807,81 1805,67 1803,23 м3/т
Теоретична температура горіння Р2 2102,88 2102,29 2101,76 2101,17 °С
Об'єм горнових газів Р3 1965,66 1962,88 1960,69 1958,22 м3/т
Температура чавуну ТА 1415,0 1415,0 1415,0 1415,0 °С
Зміст кремнію в чавуні ТАS 0,645 0,644 0,644 0,644 %
Температура шлаку ТS 1515,0 1515,0 1515,0 1515,0 °С
Розрахунок теплового балансу
Горіння вуглецю на фурмах Z1 676379,9 674988,6 673895,9 672659,7 кДж
Горіння природного газу Z2 47567,3 47567,3 47567,3 47567,3 кДж
З нагрітим дуттям Z3 4477805,0 477084,5 476438,9 4757410,7 кДж
Від окислення. З при прямому відновленні Fe Z4 190888,6 190862,0 190837,9 190812,3 кДж
1 2 3 4 5 6 7
Непряме відновлення Z5 903671,2 864985,8 828184,7 789217,3 кДж
Непряме відновлення Н2 Z6 235754,0 225926,9 216515,9 206545,3 кДж
Теплосодержание агломерату Z7 83488,2 82455,8 81437,8 803901,5 кДж
Горіння мазуту Z8 0 0 0 0 кДж
Теплосодержание мазуту Z9 0 0 0 0 кДж
Вуглецювання заліза Z10 19089,0 19089,0 19089,0 19089,0 кДж
З нагрітимдоповнить. газом Z11 0 0 0 0 кДж
Сумарний прихід тепла Z12 2634743,1 2582960,1 2533968,7 2481992,3 кДж
На дисоціацію оксидів Z13 163169,4 1589801,4 1548810,4 1505913,9 кДж
На дисоціацію карбонатів Z14 38648,0 38752,1 38861,8 38971,8 кДж
Ентальпія чавуну Z15 311918,9 377876,4 311832,1 311786,7 кДж
Ентальпія шлаку Z16 274213,8 272408,8 270644,7 268823,5 кДж
Випар вологи шихти Z17 10191,9 10185,1 10180,7 10175,2 кДж
Нагрівання водяної пари до температуриколошника Z18 20606,4 19399,3 18391,1 17302,8 кДж
Ентальпія колошникового газу Z19 251337,2 249050,8 243491,8 238036,8 кДж
Дисоціація СО2додаткового газу Z20 0 0 0 0 кДж
З водою, що охолоджує Z21 54000,0 54000,0 54000,0 54000,0 кДж
Витрата тепла Z22 39257,6 38486,0 37756,1 36981,6 кДж
Сумарна витрата тепла Z23 2634747,1 2582960,1 2533968,7 2481992,3 кДж
Коефіцієнт корисної дії тепла Z24 0,868 0,868 0,868 0,867 кДж
Розрахунок RD
т.А (витрата З при rd факт.) t1 428,195 427,590 427,112 426,573 кг
т.К (витрата окислюваного З при rd=0) t2 254,034 253,429 252,951 252,412 кг
1 2 3 4 5 6 7
т. N (витрата окислюваного C при rd= 1) t3 737,815 737,209 736,732 736,193 кг
т.М (витрата З у виді З приrd=0) t4 604,412 604,412 604,412 604,412 кг
т.М1 (витрата З у виді З при гd=0 з урахуванням Н2, що бере участь в непрямому відновленні) t5 473,398 473,430 473,454 473,482 кг
т.Н (витрата З у виді З при rd=1) t6 111,467 111,467 111,467 111,467 кг
т.Н1 (витрата З у виді З при rd=1 з урахуванням восстановител. роботи Н2) t7 -19,547 -19,515 -19,491 -19,463 кг
rd E (міра прямоговідновленнящо відповідає повномувикористанню газу) t8 0,586 0,586 0,586 0,586 кг/кг
т.Е (витрата З у виді З при rdE) t9 249,987 249,987 249,987 249,987 кг
т.Е1 (витрата З у виді З при rdE а обліком восстановительн. работи Н2) t10 118,974 119,005 119,030 119,058 кг
rd m(теоретична міра прямого відновлення) t11 0,202 0,202 0,203 0,203 кг/ кг
Δ rd(міра наближення гdфакт. до rdm) t12 0,157 0,157 0,157 0,157
rd фактична t13 0,359 0,359 0,359 0,359
Розрахунок КИПО
Об'єм насипної маси g1 1,986 1,975 1,965 1,955 м3
Уявний об'єм g2 1,132 1,127 1,122 1,116 м3
Вільний об'єм g3 0,430 0,430 0,429 0,429 м3
Об'єм шматків > 80 мм g4 0,030 0,030 0,030 0,030 м3
Об'єм шматків 80-60 мм g5 0,11 0,11 0,11 0,11 м3
Об'єм шматків 60-40 мм g6 0,292 0,292 0,291 0,291 м3
Об'єм шматків 40-25 мм g7 0,197 0,197 0,196 0,196 м3
Об'єм шматків 25-10 мм g8 0,151 0,149 0,147 0,145 м3
Об'єм шматків 10-5 мм g9 0,280 0,278 0,277 0,275 м3
Об'єм шматків 5-0мм g10 0,062 0,061 0,061 0,060 м3
Сумарна поверхня g11 1500,907 1487,722 1474,744 1461,382 м2
Поверхня, що доводиться на одиницю об'єму насипної маси g12 755,754 753,131 750,418 747,637 м2/м3
d еквівалентне g13 2,275 2,281 2,288 2,294 мм
Об'єм горнового газу g14 1965,66 1962,881 1960,696 1958,224 м3/т
Зміст водню в горновому газі g15 0,115 0,115 0,115 0,116 м3/м3
Вміст азоту в горновому газі g16 0,478 0,476 0,478 0,478 м3/м3
Зміст З в горновому газі g17 0,407 0,407 0,407 0,407 м3/м.
Приведена питома вагагорнового газу g18 1,116 1,116 1,116 1,116 кг/м3
Питома вага шихти g19 1,174 1,173 1,171 1,169 кг/м3
Δ Р (перепад тиску) g20 1,330 1,299 1,299 1,298 атм.
Фактична питома вага g21 0,585 0,584 0,584 0,584 кг/м3
Об'єм фурмених газівкорисного об'єму в добу g22 7347,585 7348,472 7349,187 7349,990 м3/м3
Об'єм фурмених газівкорисного об'єму в добу g23 3947,213 3847,486 3847,359 3847,382 нм3/м3
КИПО g24 0,511 0,510 0,510 0,509 м3/т доб
Iх(по сумарному вуглецю) g25 921,133 921,315 921,375 921,484 кг/м3
Температура газу 1828,01 1827,85 1827,85 1827,79 °С