Смекни!
smekni.com

Лазерное излучение и его применение (стр. 5 из 8)

F + H2 ® HF* + Н;

H + F2 ® HF* + F;

HF* ®HF + hn.

В первой реакции для инициирования необходим сво­бодный атом фтора. Одной из постоянных проблем хими­ческих лазеров является разработка методов эффектив­ного получения таких свободных атомов. Возбужденная молекула HF (обозначаемая HF*), возникающая при такой реакции, может находиться в возбужденном сос­тоянии, являющемся верхним уровнем лазерного пере­хода. Третья реакция выражает переход в нижнее лазер­ное состояние, которое не заселяется при химической реакции. Оно сопровождается испусканием квантов све­товой энергии hv. Таким образом, инверсия населенно­стей возникает автоматически всякий раз после того, как протекает химическая реакция, и в качестве конечного продукта возникают молекулы в возбужденном состоя­нии. Для инициирования реакции, т. е. для первоначаль­ного создания свободных атомов, может потребоваться электрическая энергия, но как только реакция началась, образуются свободные атомы и эти реакции будут непре­рывно продолжаться. Наиболее хорошо разработанными лазерами являются лазеры на фтористом водороде, рабо­тающие на многих длинах волн, расположенных в диапа­зоне 2,6...3,6 мкм, а также лазер на окиси углерода, генерирующий на длинах волн около 5 мкм. Химические лазеры, работающие в непрерывном режиме, дают выход­ную мощность около нескольких киловатт. Они работают без электрического питания, используя смешение вте­кающих химических компонентов. Такой лазер похож на работающий реактивный двигатель, поскольку рабочая химическая смесь со сверхзвуковой скоростью прокачивается через резонатор, а энергия, выделяющаяся при химической реакции, из резонатора с помощью зеркал выводится и направляется в требуемом направлении.

Йодный лазер относится к фотодиссационным ла­зерам, так как в нем используется эндотермический процесс, в отличие от химических лазеров (действие которых основано на использовании экзотермических химических реакций).

5.6 Ультрафиолетовый лазер.

До этого были рассмотрены лазеры, излучающие в видимом и инфракрасном диапа­зонах электромагнитного спектра. Важное значение имеют ультрафиолетовый и рентгеновский участки диапа­зона спектра частот. Однако первый освоен крайне слабо. Создана часть приборов на аргоне, криптоне и азоте. Они излучают в диапазоне волн 0,29...0,33 мкм и имеют очень незначительную мощность. Лишь работы последнего вре­мени показали, что могут быть созданы и лазеры вы­сокой мощности. Для этого пригодны так называе­мые эксимерные лазеры на аргоне, криптоне и ксеноне.На практике эксимерный лазер представляет собой газовую камеру высокого дав­ления (до десятков атмосфер). Внутри камеры установ­лены зеркала с диэлектрическими покрытиями. Возбуж­дение осуществляется импульсным пучком быстрых электронов, которые вводятся в газ. В некоторых экспе­риментах использовались импульсы тока 70 кА электро­нов с энергией 1 МэВ.

5.7 Лазер на свободных электронах.

Принцип действия такого лазера основан на преобразовании энергии спектрального пучка релятиви­стских электронов в магнитном поле в излучение в опти­ческом диапазоне волн.

Схема лазера на свободных электронах:

1-зеркало; 2-пучок; 3-луч лазера; 4-знакопеременное магнитное поле; 5-ускоритель электронов.

Из рисунка видно, что ускори­телем электронов является устройство, выполненное в виде тороида, вокруг которого располагаются магнитные катушки. Магнитное поле, создаваемое этими катушками, управляется по определенному закону, обеспечивающему ускорение электронов от одного оборота к другому. Это позволяет получить очень высокие скорости электронов. Выбрасываемые из тороида электроны попадают в уст­ройство, называемое линейным ускорителем. Оно образовано магнитами с чередующимися полюсами. Это устройство напоминает резонатор. В нем образуется оп­тическое излучение, которое и выводится наружу. По­скольку процесс преобразования энергии электронов в оптическое излучение осуществляется непосредственно, то такой лазер обладает высоким кпд и может работать в режиме повторяющихся импульсов. Другим, очень важ­ным преимуществом лазера на свободных электронах, как утверждается, является возможность перестройки длины волны излучения, что особенно важно для обеспе­чения более эффективного прохождения излучения в ат­мосфере. Первые экспериментальные установки были слишком громоздкими. Ряд последующих образцов позволил зарубежным специалистам высказать мнение, что в будущем лазеры на свободных электронах найдут применение в системах оружия, размещаемого на космических и авиационных летательных аппаратах

5.8 Лазер на иттрий-алюминиевом гранате (ИАГ).

Этот лазер получил широкое распространение, благо­даря низкому порогу генерации и высокой теплопроводности активного элемента, что позволяет получать гене­рацию при большой частоте повторения импульсов и в непрерывном режиме.

Длина волны излучения лазера равна 1,064 мкм, мак­симальная длина активного элемента около 150 мм, энергия в одиночном импульсе до 30 Дж, длительность импульсов около 10 нс, а предельная частота повторе­ния – 500, кпд около 1 %.

5.9 Апротонный жидкостный лазер.

Свое название этот лазер получил потому, что в не­органических растворителях с активными лазерными ионами отсутствует водород. Именно отсутствие групп атомов с высококолебательными частотами и позволяет осуществить в них эффективную лазерную генерацию Nd3+ по четырехуровневой схеме с поглощением света накачки собственными полосами поглощения неоди­ма.

Эти лазеры имеют в своей основе токсичные и вязкие жидкости, которые к тому еще и агрессивны, что значи­тельно сужает выбор возможных конструкционных мате­риалов (кварц, стекло, тефлон) и вынуждает производить тщательную герметизацию кювет. Весьма сложной задачей является конструирование узлов прокачки рабо­чей жидкости.

Длина волны генерации составляет 1,056; 1,0525 мкм. Лазеры могут работать как в режиме свободной генера­ции, так и в моноимпульсном режиме, причем для них характерен режим самомодуляции добротности, проявляющийся при малых значениях добротности резонатора.

5.10 Лазер на парах меди.

Одним из достижении лазерной техники является по­лучение стимулированного излучения от среды, образо­ванной парами меди. Эти пары являются следствием газового разряда в гелии при большой частоте повторения импульсов и значительной средней мощности, обес­печивающей получение высокой температуры в газораз­рядной трубке – около 1600 °К. Излучение сосредо­точено на волнах 0,51 и 0,58 мкм. Кроме высокого коэффициента усиления, такие лазеры дают кпд, дохо­дящий до 1%. Средняя мощность лазера достигает 50Вт.

В связи с большим коэффициентом усиления и малой длительностью существования инверсии населенности для получения достаточно малой расходимости луча эффективно применение неустойчивых резонаторов.

5.11 Газодинамический лазер.

Нагретая до высокой температуры (1000—2000 К) смесь CO2 и N2 при истечении с большой скоростью через расширяющееся сопло сильно охлаждается. Верхний и нижний энергетический уровни при этом термоизолируются с различной скоростью, в результате чего образуется инверсная заселенность. Следовательно, образовав на выходе из сопла оптический резонатор, можно за счет этой инверсной заселенности генерировать лазерное излучение. Действующие на этом принципе лазеры называются газодинамическими. Они позволяют получать очень большие мощности излучения в непрерывном режиме.

6. Применение лазеров.

6.1 Лазеры в медицине.

Свойством лазерного луча сверлить и сваривать раз­личные материалы заинтересовались не только инжене­ры, но и медики. Они решили использовать его в каче­стве скальпеля. По сравнению с обычным такой скаль­пель обладает целым рядом достоинств:

во-первых, лазерный скальпель отличается постоянст­вом режущих свойств, надежностью в работе;

во-вторых, лазерный луч рассекает ткань на расстоя­нии, не оказывая на нее какого-либо механического дав­ления;

в-третьих, лазерный скальпель имеет абсолютную сте­рильность, поскольку с тканью взаимодействует только излучение, причем в области рассечения возникает вы­сокая температура;

в-четвертых, лазерный луч производит почти бескров­ный разрез, поскольку с рассечением тканей коагулируют края раны, как бы «заваривая» мелкие сосуды;

в-пятых, лазерный луч позволяет хирургу хорошо видеть оперируемый участок, в то время как скальпель за­гораживает рабочее поле.

Кроме того, рана от лазерного скальпеля (как пока­зали клинические наблюдения) почти не болит и отно­сительно скоро заживляется. Все это привело к тому, что лазерный скальпель был применен на внутренних органах грудной и брюшной полостей. Им делают операции на желудке, пищеводе, кишечнике, почках, печени, селезен­ке, сердце, делают кожно-пластические операции. Широ­ко используют в офтальмологии при лечении глазных болезней. Исторически сложилось так, что окулисты первые обратили внимание на возможность использова­ния лазера и внедрили его в клиническую практику.

Также лазеры применяются для лечения заболеваний слизистой оболочки рта, для сращивания костей после переломов, для ле­чения заболевания вен, приводящего к трофическим яз­вам, для лечения послеожоговых ран.