Смекни!
smekni.com

Проектирование силовой части (стр. 6 из 7)

Момент на валу двигателя.

М = (G +Go) rK / 102hiRк

М = 8,4 * 103 *1,02 * 2,75 / 102 * 0,8 * ( 0,6 / 2 ) * 49 = 160 Нм

Максимальный расчётный момент на валу.

Мmax р = 160 * 2,5 = 400 Нм

Максимальный момент двигателя.

Мmax = 765 Нм

Мmax max р

765 Нм > 400 Нм

Двигатель проходит по перегрузочной способности

Механическая характеристика.

Для выбранного двигателя построим механичаскую характеристику.

Находим основные точки механической характеристики.

no = 1000 об/мин

Mo = 0

nн = 935 об/мин

Mн = 17,36 Нм

Sкр = Sн(kкр +Ö kp + 1) = 0,06 * 4,79 = 0,3

nкр = no ( 1- Sкр ) = 1000 *( 1- 0,3 ) = 700 об/мин

Mкр = 2,5 * Mн = 2,5 * 5,3 = 13,25 Нм

6Sн = 0

n = 0

Mn =kn * Mн = 2 * 17,36 = 34,72 Hм

Найдём промежуточные точки.

1 2 3 4 5 6 7 8 9 10
S 0,6 0,1 0,15 0,2 0,3 0,4 0,7 0,75 0,8 1
M 17,3 26,2 34,7 39,4 43,4 42,3 35,6 35,1 34,8 34,7
n 935 900 850 800 700 600 300 2500 200 0

Построим нагрузочную диаграмму работы двигателя.

Допустимое ускорение при передвижении.

адоп = 0,1 ¸ 0,3 м/с2

Время при торможении и пуске.

tn = tт = Uном / а

tn = tт = 1,2/ 0,2 = 6 с

Путь пройденный за время торможения и пуска.

Lт = Ln = 1,2 * 6 = 7,2 м

Путь пройденный в установившимся режиме.

lу =L - 2ln , где L – 40 м – длина цеха ,

lу =40 – 2 * 7,2 = 25,6 м

Время движения в установившимся режиме

tу = lу / V = 25,6 / 1,2 = 31 c

Найдём динамический момент.

Mд = I * E, где Е = а /r ;

r = Рк / 2ip = 0,6 / 2 * 49 = 6,1 * 103

E = 0,2 / 6,1 * 103

Mд = 0,475 * 32 = 15,2 Нм

Момент при пуске

Мп = Мст + Мд

Мп = 17,3 + 15,2 = 32,6 Нм

Момент при торможении

Мт = Мном + Мд

Мт = 17,3 – 15,2 = 2,16 Нм

Строим нагрузочную диаграмму.

Выбор кабеля.

Выбор по механической прочности .

Для крановых механизмов необходим кабель гибкий, медный много проволочный, что обеспечивает его механическую прочность.

По условию механической прочности кобеля для передвижения электроприемников должны иметь сечение не менее 2,5 мм2.

Выбор по условию нагрева.

Допустимая токовая нагрузка на кабель.

Iдл = kn – Iнд, где Iнд допустимая длительная токовая нагрузка на кабеле.

kn - Поправочный коэффициент

Кп = К1 * К2 * К3

К1 – коэффициент температуры окружающей среды.

К2 – коэффициент повторного кратковременного режима работы.

К3 - коэффициент по напряжению.

Кп = 1 * 0,175 * 1,09 = 0,19

Iнд = 385 A

Iдл = 385 * 0,19 = 16,1 A

Выбираем кабель, в соответствии с расчётными данными, типа

КШВГ – ХЛ с сечением 16 мм2.

Защита электродвигателей.

Защита от короткого замыкания принимаем плавкие вставки типа НПР, при защите ответвления к двигателям крана номинальный ток плавкой вставки определяем по величине наибольшего пускового тока двигателей крана.

Iв > Iп / k , где Iв – ток плавкой вставки, Iп - пусковой ток.

k = 1,6 ¸ 2 – коэффициент плавкой вставки.

Для двигателя механизма подъема.

Iп = 85,8 А

Iв = Iп / 2 ; Iв = 85,8 / 2 = 42,9 А.

Выбираем предохранитель НПР – 100 с током плавкой вставки 60 А.

Для двигателя передвижения тали.

Iп = 89,7 А.

Iв = Iп / 2 ; Iв = 89,7 / 2 = 44,8 А.

Выбираем предохранитель НПР – 100 с током плавкой вставки 60 А.

Для двигателя механизма передвижения моста.

Iп = 331,5 А.

Iв = Iп / 2 ; Iв = 331,5 / 2 = 165 А.

Выбираем предохранитель НПР-400 с током плавкой вставки 180 А.

Защита от перегрузки.

Защита от перегрузки выполняется автоматическим выключателем и нагревательным элементом магнитного пускателя.

Номинальный ток защищающих от перегрузки теплового расцепителя автоматического выключателя и нагревательного элемента магнитного пускателя выбирается по длительному расчётному току линии.

Iдл = 16,15 А.

Iнт >Iдл

Из этого условия выбираем автоматический выключатель А – 3114 с

Iнт = 20 А.

Магнитные пускатели второй величены серии ПМ – 200 и тепловые реле типа ТРН – 33 с

Iнт = 20 А.

Выбор контролеров.

Выбираем контролер к электродвигателю.

МТН – 112 – 6 мощностью Р = 5кВт типа КТ – 3005

MTKF – 411 – 6 мощностью Р = 17кВт типа КТ – 2006

Путевые выключатели.

Для передвижения механизмов устанавливаются путевые выключатели мгновенного действия серии ВК – 200 и ВК – 300 со временем включения независящим от скорости перемещения приводного механизма и контактным нажатием независящим от положения приводного механизма в процессе отключения.

Для подъемного механизма – включатели типа ВК – 300, для передвижного механизма ВК – 200.

Литература.

К. Н. Дубровский. Эдектрооборудование мостовых кранов.

Н. С. Ущаков. Мостовые элекрические краны.

Б. Ю. Липкин. Электроснабжение промышленых предприятий и установок.

В. М. Васин. Электрический привод.

Электротехнический справочник. 1,2 том.

Защита окружающей среды от выбросов вредных веществ котельными установками.

Основные характеристики вредных веществ в продуктах сгорания .

При нормальной работе котельных установок происходит непрерывный выброс в атмосферу продуктов сгорания, в которых всегда присутствуют вещества, оказывающие вредное воздействие на жизнедеятельность растений, животных и человека. Так, сжигание газообразных топлив сопровождается поступлением в атмосферу угле кислоты ( углекислого газа ) СО2 оксидов азота NOx ( NO + NO2 ) небольшого количества продуктов не полного сгорания – оксида углерода СО и метана СН4. В продуктах сгорания мазутов содержится углекислота, оксиды азота, сернистого и серного ангидридов ( SO2 и SO3 ), соединения ванадия, оксид углерода и метан. С ними могут также выбрасываться частицы отложений, удаляемых с поверхности нагрева котлоагрегатов при их отчистке. В ряде случаев при сжигании мазутов в атмосферу выбрасывается некоторое количество копоти. При сжигании твёрдого топлива выбросы представляют собой смесь оксидов азота, углекислоты, паров сернистого и серного ангидридов, газов фтористых соединений и оксида углерода. Кроме того, в атмосферу поступают значительное количество летучей золы и частицы несгоревшего топлива. При сгорании практически всех видов топлива в атмосферу поступает небольшое количество формальдегида и бензопирена. Все упомянутые вещества являются токсичными.

Оксиды азота , образующиеся вследствие окисления азота в ядре факела пламени всех видов топлива, являются очень токсичными соединениями. Основной фактор, влияющий на количество образующихся в топке оксидов азота - температура в ядре факела. При температурах 1800 – 1900 оС и наличии свободного кислорода концентрация оксидов азота, образующихся в факеле, превышает допустимую в свежем воздухе в 1000 – 20000раз. Оксиды азота окрашены в красно – бурый цвет и являются отравляющими газами, причем диоксид азота в 4раза более токсичен, чем оксид. Кроме отравляющего действия на организм человека, оксиды азота вызывают интенсивную коррозию металлических поверхностей. Очистка продуктов сгорания от оксидов азота способами улавливания технически сложна и в большинстве случаев экономически не рентабельна.

Весьма вредным является выброс в атмосферу сернистого газа. Он обладает резким запахом, но не имеет цвета. Запах газа начинает ощущаться при концентрации 0,006мг/л. Содержание оксидов серы в продуктах сгорания практически не зависит от качества организации топочного процесса и определяется в основном содержанием серы в топливе. Серистый газ гибельно воздействует на зелёные насаждения, особенно на плодовые и хвойные деревья, а также на посевы. При концентрации газа 0,05 мг/л газ вызывает раздражение слизистой оболочки глаз и кашель. Такую концентрацию человек может выдержать всего 3 минуты, а 0,3 мг/л – всего одну минуту. Высокие концентрации сернистого газа вызывают острый бронхит одышку, потерю сознания. Кроме вредного воздействия на всё живое сернистый газ вызывает усиленную коррозию металлических поверхностей и порчу различных веществ и материалов. При наличии сернистого газа снижается также прозрачность атмосферы. Содержание серного ангидрида в продуктах сгорания котельных топлив не превышает 3% содержания сернистого газа, однако при выходе из дымовой трубы, под действием солнечной радиации, сернистый ангидрид окисляется в серный, а за тем, соединяясь с водой, может образовывать серную кислоту.

Токсичным веществом является также оксид углерода СО. Это соединение образуются в случае неполного сгорания углерода практически при сжигании всех видов топлива. Количество оксида углерода может составлять при сжигании твёрдых топлив до 2% массы сжигаемого топлива, при сжигании газа и мазута 0,05%. Оксид углерода не имеет запаха и цвета, что затрудняет его обнаружение.

Формальдегид – газ с резким неприятным запахом, обладает высокой токсичностью. Содержание формальдегида в продуктах сгорания наблюдается в малых отопительных котельных при сжигании мазута в условиях, когда имеет место общий или местный недостаток воздуха. В продуктах сгорания, выбрасываемых в атмосферу, находятся также канцерогенные вещества. Наиболее распространенным и сильнодействующим из них является так называемый 3,4 – бензопирен С20Н12 (продукт гидролиза угля и углеродных газов). Это соединение представляет собой твёрдое вещество в виде желтоватых игольчатых кристаллов, образующееся при сжигании топлива. На количество бензопирена влияет режим работы топки, особенно величена температуры в ятре факела и количество имеющегося там в наличии кислорода. Бензопирен образуется при высокой температуре в случае недостатка воздуха для полного сгорания топлива. Частицы твёрдого углерода сгорают медленнее всего. При догорании они раскаляются, поглощают другие вещества и придают пламени характерную жёлтую окраску. Наличие жёлтой окраски пламени свидетельствует о том, что в продуктах сгорания имеются канцерогенные вещества. Много канцерогенных веществ образуется при режимах горения с саже образованием. Повышенное количество канцерогенов в продуктах сгорания наблюдается обычно при слоевом сжигании твёрдых топлив.