Смекни!
smekni.com

Совершенствование очистки закачиваемых вод в системе поддержания пластового давления в условиях (стр. 4 из 6)

Снижение приемистости нагнетательных скважин определяется большим числом независимых факторов (коллекторскими свойствами пласта, технологией вскрытия бурением, ОПЗ, конструкцией забоя скважин, коррозионными и другими процессами), в том числе и качеством закачиваемых вод.

Отмечено что снижение проницаемости пористой среды имеет место даже при фильтрации через нее чистого керосина, глицерина и бидистиллиробанной воды. Это свидетельствует о естественной деградации пористой среды и кольматации суженных участков пор собственными частицами, играющими роль прямых и обратных клапанов (при изливах и изменении направления фильтрации).

Более 90 опытов были осуществлены при фильтрации воды после фильтрации нефти и более 40 - через водонасыщенные керны. Водопроницаемость в конце опытов уменьшилось в 226 раз. При прокачке глицерина через высокопроницаемые керны (420 - 867 мД) падение проницаемости составило 20-80 %.

Для эффективного решения проблемы подготовки воды предлагается осуществить проектирование и реализацию системы очистки воды с использованием каскадной технологии, предусматривающей последовательное и направленное доведение качества воды до требований конкретного объектазаводнения, вплоть до нагнетательной скважины.

В проектах реконструкции системы ППД и по опережающим программам НГДУ по совершенствованию разработки слабопроницаемых пластов предусмотреть возможности оптимизации параметров нагнетания воды по скважинам, использования эффектов излива, очистки боды до базового качества на очистных станциях, использования перемычек для промывок водой, исключение возможности сброса некондиционных стоков в систему ППД, утилизацию водных нефтешламов в системах нефтегазодобычи, ППД и других специально предназначенных для этого объектах, замену металлических обсадных колонн некорродирующими (стеклопластиковыми) трубами, внедрение металлопластмассовых труб, изменение конструкции призабойной части скважины, улучшение качества вскрытия пластов, освоение нагнетательных скважин и осуществление ремонтных работ.

Одним из принципиально важных решений, предложенных в ходе выполнения программы безусловно стала каскадная технология.

3.3 Каскадная технология подготовки и очистки воды

Для каскадной очистки сточной воды поступающей на КНС подбирали технические средства, которые выпускаются промышленностью или же могут быть изготовлены в промысловых условиях. К ним относятся:

- горизонтальные отстойники с гидрофобным фильтром и РВС обеспечивающие подготовку сточной воды базового качества для закачки в пласты с высокой проницаемостью;

- гидроциклон, аппараты АОСВ 2/2, прошедшие эксплуатационные испытания на Куакбашской УПВСН и Горкинских ОС для очистки и закачки сточной воды в пласты со средней проницаемостью,

- фильтры типа "Экон" и установка «КОАЛЕСЦЕНТ» для доочистки и закачки сточной воды в пласты с низкой проницаемостью;

- вибраторы типа БГ 170/150, для диспергирования содержащихся в сточной воде примесей на устье нагнетательных скважин,

- фильтрующие элементы проточные (ФЭП) для отвода сточной воды высокого качества из разводящих водоводов;

- емкости для сбора шлама при доочистке сточной воды;

- центробежные насосы для подачи многократно раздавленного водой шлама на КНС для закачки в высокоприемистые нагнетательные скважины.

В процессе внедрения каскадной технологии в НГДУ "Лениногорскнефть" прошли испытания отечественные аппараты АОСВ 2/2 и ротационная гидроциклонная установка (РЦУ), а также импортный гидроциклон фирмы Серк-Бейкер и установка очистки пластовой воды (УОПВ) разработанная ООО «Экоцентр» г. Севастополь.

Испытания показали высокую эффективность АОСВ 2/2, улучшающего показатели качества воды по ТВЧ и нефтепродуктам в 3-4 раза.

Несмотря на некоторые конструктивные недостатки роторного гидроциклона, он также показал хорошие показатели по качеству и представляется нам перспективным аппаратом. Что касается импортного гидроциклона фирмы Серк-Бейкер, то здесь следует отметить недостатки в исполнении отдельных узлов, которые до сих пор не позволили выйти на запланированные показатели по качеству - 20 мг/л по нефтепродуктам, и ТВЧ. Что касается УОПВ, то установка - позволяет произвести глубокую очистку пластовой воды со стабильными показателями на выходе. Технология работы установки основана на коалесцирующем эффекте первого этапа очистки и фильтрации воды через кварцевый песокна втором этапе.

Однакок ряду положительных характеристик, как показали промышленные испытания, имеются и некоторые существенные недостатки как:

а) низкое давление на выходе установки т.е. меньше необходимого для прямого подключения на прием насоса типа REDА-500,

б) возможные проскоки песка.

в) сложность эксплуатации в зимнее время.

Это, а также высокая стоимость врядли позволит обеспечить широкое внедрение этих аппаратов на объектах водоподготовки ОАО "Татнефть".

Известен способ разделения водогазонефтяной смеси, включающий подачу водогазонефтяной смеси в наклонный депульсатор с последующим расслоением ее и отбором полученных фаз.

Более близок к предлагаемому «Способ разделения водогазонефтяной смеси» включающий перемещение потока водогазонефтяной смеси в ламинарном режиме, разделение его на пучок потоков, перемещение их под углом к горизонту и, после расслоения каждого, полученного в пучке потока, смешивание их в общий поток и отбор полученных фаз.

Недостатком как аналога, так и прототипа является недостаточная качественная очистка водогазонефтяной смеси, происходит это потому, что каждый пузырек газа стремится всплыть вертикально вверх, а при наклонном потоке на пузырек постоянно набегает новая порция водогазонефтяной смеси, заталкивая его вниз. Это при достаточно малом объеме пузырька не дает ему всплыть, то есть разделение водогазонефтяной смеси не происходит. Кроме того, при всплытии на поверхность потока пузырьки образуют стойкую пену плохо поддающуюся последующему разделению.

Задачей изобретения является повышение качества разделения водогазонефтяной смеси.

Поставленная задача решается описываемым способом, разделения водогазонефтяной смеси, включающим перемещение транспортируемого потока водогазонефтяной смеси в ламинарном режиме, разделение его на пучок потоков и, после расслоения каждого потока в пучке на фазы, слияние их в общий поток, новым является то, что транспортируемый поток последовательно перемещают в горизонтальном и наклонном направлениях разделению на пучок потоков подлежит только ядро транспортируемого потока, причем на горизонтальном направлении потоки в пучке перемещают по винтовой образующей, а на наклонном направлении потоки в пучке перемещают параллельно при встречном барбатировании потока на наклонном направлении пузырьками газа с химическим составом, идентичным или эквивалентным отслоенной газовой фазе. Исследования патентной и научно-технической литературы показали, что подобная совокупность существенных признаков на сегодня - является новой и ранее не использовалась, это, в сбою очередь, позволяет сделать заключение о соответствии технического решения критерию "новизна".

.Транспортировка потоков пучка в горизонтальном направлении по винтовой образующей:

- уменьшает путь пробега пузырьков газа до их слияния в укрупненные пузырьки,

- увеличивает удельную поверхность контакта нефть-газ, что ускоряет процесс дегазации нефти и разрушение пен,

- расширяет область сдвиговых деформаций и сокращает область центральной поршневой воды, что приводит к интенсивному разрушению пены,

- придает каждому пузырьку тангенциальное ускорение, способствующее более быстрой транспортировке пузырька к краю потока и осаждению его на формирующие поток стенки.

Транспортировка пучка потоков в наклонном направлении при параллельном перемещении увеличивает длину пробега (относительно потока) барботажных пузырьков, что способствует лучшему слиянию их микропузырьками газа, растворенными в водогазонефтяной смеси. Кроме того, отслоенная фаза воды в каждом наклонном потоке соскальзывает по нижней его части вниз, где скапливается, и в последствии подлежит отбору.

Наличие стенок, формирующих пучок потоков, помогает коалесценции пузырьков, осаждая на себе пузырьки газа и, путем слияния последних, укрупняя.

Применение для барботирования газа с химическим составом, идентичным или эквивалентным отслоенной газовой фазе, позволяет избежать ненужных химических реакций.

Способ осуществляли в следующей последовательности. Половину трубопровода (КДФ) длиной 120 м и диаметром в 1 м разместили в горизонтальном положении, а другую - под наклоном в 3 градуса (в зависимости от рельефа угол наклона может быть от 2 до 4 градусов). В горизонтальном участке трубопровода разместили отцентрованный пучок полиэтиленовых труб, перекрывающий сечение трубопровода на 70%, длина пучка составляла 12 м, габаритный диаметр 0,7 м, пучок свернут по винтовой образующей на половину окружности (шаг полученного бинта 24 м). Внутренний диаметр полиэтиленовых труб для пучка составлял 68 мм. В наклонном участке трубопровода разместили отцентрированный пучок полиэтиленовых труб таких же размеров, только размещенных параллельно друг другу. Внизу наклонного участка трубопровода разместили душевые насадки. Для равномерного распределения газа вход каждой насадки снабдили переменным гидравлическим сопротивлением.

При работе ядро потока водогазонефтяной смеси разделяется на пучок потоков, проходящий внутри и между полиэтиленовыми трубами. В каждом потоке пучка происходит расслоение водогазонефтяной смеси а так как высота потоков сравнительно небольшая, то мельчайшие газовые пузырьки успевают всплыть вверх под верхнюю часть трубы. Одновременно приложенное к каждому пузырьку тангенциальное ускорение создает силу, прижимающую эти пузырьки в формирующей пучок потоков стенки, находясь там под гидростатичным давлением, они сливаются в большие пузырьки, которым, при слиянии пучка потоков в общий, достаточно плавучести для всплытия в верхнюю часть для последующего отбора. Полученный таким образом газ отделяют и подают в трубопровод с душевыми насадками. Последние отрегулированы таким образом, что в процессе работы из каждой идет приблизительно равное количество газа. Истекая из отверстий душевых насадок газ формируется в пузырьки, размеры которых в каждом конкретном случав разные и зависят от вязкости прокачиваемой водогазонефтяной смеси. Когда каждый из пузырьков увеличивается на столько, что сможет оторваться, он всплывает, по пути притягивая микропузырьки из водогазонефтяной смеси. А так как пузырьки всплывают против направления движения потока, то контакт их происходит с большей Массой водогазонефтяной смеси. После касания пузырьком потолка наклонного трубопровода он скользит вверх, сливаясь с другими такими же пузырьками.