Смекни!
smekni.com

Разработка технологической карты на производство свай квадратного сечения (стр. 2 из 7)

Для получения ровной и гладкой поверхности ж/б изделий производим смазку рабочих поверхностей форм эмульсионной смазкой в виде эмульсии «масло в воде » (прямая эмульсия) с содержанием эмульсола ЭКС в количестве 10 мл на 100мл смазки. Эмульсионную смазку следует наносить распылением через форсунку. Расход эмульсионных смазок составляет 200-300г на 1

поверхности форм.

Смазка

Для получения гладкой и ровной поверхности ж/б изделий производят смазку рабочих поверхностей форм. Правильно выбранная и хорошо нанесенная смазка облегчает расформование изделия и способствует получению качественной поверхности. Используем смазку в виде эмульсии «масло в воде» (прямая эмульсия) с содержанием эмульсола ЭКС в количестве 10 мл на 100 мл смазки. Смазка типа эмульсионных наносится распылением через форсунку. Расход эмульсионных смазок составляет 200-300 г на 1 м2 поверхности формы.

1.4. Режим работы производства

Режим работы производства приведен в таблице 6.

Таблица 6

Режим работы производства

Название показателя Значение показателя
Численность рабочих суток на выгрузку сырья и материалов 365 дней
Номинальное количество рабочих суток в году 260 дней
Число рабочих смен в сутки кроме тепловой обработки 1 смена по 8 часов
Число рабочих смен для тепловой обработки 2 смены
Продолжительность рабочей смены 8 часов
Годовой фонд времени работы технологического оборудования 233 дня

Принимается режим работы предприятия и рассчитывается количество рабочих суток в году для принятой схемы организации производства по формуле

Т0 = Кин–Тосн), сут,

где Тп – длительность плановых остановок на ремонт основного технологического оборудования, сут, принимается равным 7 сут. при стендовом производстве;

Тн – номинальное количество рабочих суток в год.

Ки –коэффициент использования оборудования, Ки = 0,92

Т0 = 0,92*(260-7)=233 часа

2. Технология и организация производства

2.1. Технологическая схема производства

Производство квадратных свай осуществляется по стендовой технологии. Стендовый способ производства железобетонных изделий характеризуется следующими основными признаками: весь процесс производства осуществляется в неподвижных формах или на специальных стендах; изделие в процессе обработки остаются неподвижными, а рабочее и технологическое оборудование от одной формы к другой; за каждым стендом или формой закрепляется одно или несколько технологически однородных изделий.

Весь технологический процесс расчленяется на четыре рабочих поста:

1 пост – распалубка;

2 пост – армирование;

3 пост – формование;

4 пост – тепловая обработка.

1 пост. После извлечения изделия и формой из камеры тепловой обработки выполняется открытие продольных и поперечных бортов форм, распалубка и осмотр изделий, после чего изделия поступают на склад готовой продукции. Далее производится чистка и смазка форм. Чистку поддонов осуществляют вручную. В качестве смазки используют смазку в виде эмульсии «масло в воде ».

2 пост. Производится укладка арматурных каркасов в формы, фиксирование закладных деталей, установка деревянных пробок, установка фиксаторов защитного слоя бетона.

Пост первого пролета оборудован установкой для механического натяжения арматуры.

3 пост. Пост оборудован виброплощадкой и формовочной машиной.

4 пост. Для тепловой обработки железобетонных изделий применяются ямные пропарочные камеры, располагаемые параллельно формовочному пролету. Загрузка ямных камер осуществляется мостовым краном грузоподъемностью 10 т.

Стенки ямной пропарочной камеры сделаны из керамзитобетона марки М200. Пол камеры сделан с уклоном для стока конденсата в слив, оборудованный гидрозатвором и подключенный к общей системе слива конденсата. Предотвращение утечки пара через неплотности, образуемые крышкой и стенкой камеры, достигается применением гидравлического затвора. Такой затвор образуется швеллерами, заполняемыми водой и устанавливаемыми на верхнем обрезе стен камеры. Герметизация осуществляется при опускании крышки, по периметру которой приварены из металлического уголка ребра.

Сырье и материалы на производство в главный корпус доставляются:

-арматурные каркасы и сетки из арматурного участка доставляются к постам армирования мостовыми кранами;

-бетонная смесь поступает из бетоносмесительного цеха в бадьях по бетоновозной эстакаде, из которых выгружается в бункера бетоноукладчиков;

-смазка поступает из отделения приготовления смазки по трубопроводам.

Функциональная технологическая схема производства представлена на рис. 2.


2.2. Расчет основных параметров технологических режимов

2.2.1. Армирование

Натяжение арматуры в железобетонных конструкциях применяется для повышения трещиностойкости, долговечности, уменьшения деформативности конструкций. Производство предварительно напряженных конструкций осуществляется, как правило, по стендовой технологии и может выполняться механическим способом.

Механическое натяжение арматуры (стержневой, проволочной и канатной) производят гидродомкратами и натяжными машинами, которые оборудованы дополнительными приспособлениями для выполнения вспомогательных операций.

Натяжение арматуры на упоры форм или стендов может быть одиночным (каждый арматурный элемент натягивается отдельно) или групповым (одновременно натягивается несколько элементов) в зависимости от конструктивных особенностей изделия.

Рис.3 Схема для расчета длины заготовки арматуры при электротермическом натяжении:

1 – изделие; 2 – упоры поддоны; 3- зажимы; 4 – анкера; 5- захват с тягой.

Технологические расчеты механического натяжения арматуры включают расчет длины заготовки, тягового усилия домкрата и хода поршня.

Для расчета длины заготовки составляется схема для конкретного изделия и принятой технологии: натяжение на упоры длинного стенда, на упоры короткого стенда и на упоры формы.

При натяжении арматуры на упоры длинного или короткого стенда, где используются инвентарные тяги с захватами, длина заготовки должна быть меньше расстояния между упорами.

При натяжении на упоры короткого стенда (рис.) L3, мм, составляет

Lз=lи+2lа+(800…1000).

Lз=15000+2*50+1000=16100 мм

Тяговое усилие гидродомкрата устанавливается по формуле

P = 1,2 fmσ0 / (10η),

где f – площадь поперечного сечения арматуры, см2;

m – количество одновременно напрягаемых проволок, канатов;

η – коэффициент полезного действия гидродомкрата, равный 0,94…0,96;

Р – тяговое усилие гидравлического домкрата, кН.

σ0 - контролируемого напряжения, МПа (σ0 = 0,7Rsn = 0,7*1335 =

934,5 МПа)

Rsn – нормативное сопротивление растяжению арматуры, МПа;

P = 1,2*4,52*10-4*934,5*106/(10*0,95) =53,4 кН

Необходимый ход поршня гидродомкрата рекомендуется находить по формуле

S = (0,008…0,012)Lз.

S = 0,01*16100 = 161 мм

По величине тягового усилия и необходимого хода поршня подбирается домкрат. Если фактический ход поршня меньше требуемого по расчету, то производится натяжение с перехватом. Технические характеристики некоторых гидродомкратов и натяжных машин приведены в табл. 7.


Таблица 7

Техническая характеристика гидродомкратов для натяжения арматуры и натяжных машин

Показатели Марка оборудования
СМЖ-738
Усилие натяжения, кНХод поршня, ммДиаметр натягиваемой арматуры, ммМасса, кгУстановочная мощность, кВт 630320575-
Завод-изготовитель: Кемеровский «Строммашина»

2.2.2. Формование

На выбор способа формования изделия значительное влияние оказывает принятая марка бетона по удобоукладываемости. Удобоукладываемость бетонной смеси назначается в зависимости от конструктивных особенностей железобетонных изделий и принятых способов формования.

Для формования квадратных свай, изготавливаемых на стенде, применяются наружные электромеханические вибраторы с направленными колебаниями (в данном случае ИВ-36, ИВ-74). Характеристики вибратора приведены в таблице 8.

Таблица 8

Характеристика вибратора

Показатели Наружные электромеханические с колебаниями
направленными
ИВ-36, ИВ-74
Вынуждающая сила, кН
Максимальный момент дебалансов, Н·м 0,46
Частота колебаний, Гц 47
Мощность электродвигателя, кВт 0,4
Давление воздуха, кПа -
Расход воздуха, м3/мин -
Размер вибронаконечника, мм:
диаметр -
длина -
Масса, кг 28

2.2.3. Режим тепловой обработки (ТО)