Смекни!
smekni.com

Заторный аппарат (стр. 3 из 3)

Вт/(м2·К). 1

Исходя из проделанных выше расчетов определяем необходимую площадь поверхности нагревания заторного аппарата по формуле (2.5)

м2. 1

3 Определение расхода пара

Расход пара в аппарате определяем из уравнения теплового баланса:

, (3.1)

где Dп – расход греющего пара, кг;

Wвып – количество выпариваемой влаги, кг;

iп, iвт, iк – соответственно удельная энтальпия греющего пара, вторичного пара и конденсата, кДж/кг;

Qпот – потери теплоты в окружающую среду, кДж;

Свып – теплоёмкость воды при температуре кипения затора, кДж/(кг·К), Свып = 4,23 кДж/(кг·К);

Отсюда расход греющего пара равен:

. (3.2)

При настойном способе затирания количество выпариваемой влаги составляет 2 % от массы затора, то есть

кг (3.3)

При температуре насыщенного водяного пара (греющего пара) tн.п = 138оС:

кДж/кг, 1

кДж/кг. 1

Давление вторичного пара Рбар = 0,1033 МПа, тогда

кДж/кг. 1

Потери теплоты в окружающую среду Qпот рассчитываются по формуле:

, (3.4)

где αоб – коэффициент теплоотдачи конвекцией и лучеиспусканием, Вт/м2·К;

tст, tвозд – температуры стенки аппарата и воздуха соответственно, оС.

. (3.5)

Для зимнего периода работы, когда потери тепла в окружающую среду максимальны, примем tвозд = 15 оС.

По технике безопасности температура стенки не должна превышать 40 оС [2], то есть tст = 40 оС. Тогда согласно формуле (3.5):

Вт/м2·К. 1

Тогда, исходя из выражения (3.4)

кДж. 1

Общий расход греющего пара с учётом потерь в окружающую среду по (3.2):

кг. 1

Удельный расход пара на 100 кг зернопродуктов равен:

кг. 1

4 Расчёт мощности электродвигателя мешалки

Поскольку Reмеш > 50 (Reмеш = 122,5·105), то режим движения можно считать турбулентным. Для лопастной мешалки установлена следующая зависимость между критериями мощности и Рейнольдса [1] для турбулентного режима:

. (4.1)

Поправочные коэффициенты, которые влияют на мощность привода мешалки, определяются следующими выражениями:

, (4.2)

где α – коэффициент, учитывающий отношение D/dм для лопастной мешалки, α = 3,0;

, (4.3)

где

Нап = Нц + hдн + hкр = 2,4 + 1,2 + 0,72 = 4,32 м ; (4.4)

, (4.5)

где β – коэффициент, учитывающий отношение b/dм для лопастной мешалки, β = 0,25.

Критерий мощности для перемешивания заторной массы равен:

. (4.6)

Мощность, требуемая для перемешивания в аппарате равна:

Вт. (4.7)

С учётом КПД передачи и сопротивлений, возникающих в аппарате при движении затора, мощность электродвигателя:

, (4.8)

где fг – коэффициент сопротивления гильзы для термометра, fг = 1,1;

fтр – коэффициент сопротивления трубы для стягивания заторной массы, fтр = 1,2;

fш – коэффициент, учитывающий шероховатость стенок аппарата, fш = 1,1;

η – КПД передачи, η = 0,85. Тогда

Вт. 1

ЗАКЛЮЧЕНИЕ

В данной работе был осуществлён расчёт заторного аппарата - неотъемлемой части такого технологического этапа пивоваренного производства, как приготовление сусла.

Спроектированный заторный аппарат имеет внутренний диаметр равный 4,8 м и рассчитан на единовременное затирание 5500 кг солода. Он соответствует стандартной модели заторного аппарата ВКЗ-5. По заданию же проекта затирается 4000 кг солода, а значит, сокращается расход греющего пара, он по итогам работы оказался равен 1937,9 кг. Также была выбрана мешалка типа лопастная с числом лопастей, равным двум. Данный тип мешалки прост в исполнении, хорошо подходит для перемешивания вязких смесей, какой является смесь солод – вода. Также мы рассчитали необходимую мощность для привода мешалки – 11 кВт.

В итоге можно сказать, что рассчитанный заторный аппарат пригоден для крупных заводов, так как позволяет затирать одновременно большое количество сухого солода. А в связи с этим экономятся производственные площади и время на технологическом этапе приготовления сусла.


СПИСОК ЛИТЕРАТУРЫ

1. Кретов И. Т., Антипов С. Т., Шахов С. В. Инженерные расчёты технологического оборудования предприятий бродильной промышленности. – М. : КолосС, 2004. – 391 с.

2. Антипов С. Т., Кретов И. Т., Остриков А. Н. и др. Машины и аппараты пищевых производств. – М. : Высш. шк., 2001. – Кн. 2. - 680 с.

3. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. – Л. : Химия, 1987. – 576 с.

4. Кавецкий Г. Д., Васильев Б. В. Процессы и аппараты пищевой технологии. – М. : КолосС, 2000. – 551 с.

5. Лащинский А. А., Толчинский А. Р. Основы конструирования и расчёта химической аппаратуры: справочник. – Л. : Машиностроение, 1970. – 752 с.