Смекни!
smekni.com

Цепные передачи (стр. 2 из 4)

z1n1P=z2n2P

Отсюда передаточное отношение, понимаемое как отношение частот вращения ведущей и ведомой звездочек,

U=n1/n2=z2/z1,

где п1 и п2—частоты вращения ведущей и ведомой звездочек, мин-1; z1 и z2числа зубьев ведущей и ведомой звездочек.

Передаточное отношение ограничивается габаритами передачи, углами обхвата и числами зубьев. Обычно u£7. В отдельных случаях в тихоходных передачах, если позволяет место, u£10.

Числа зубьев звездочек. Минимальные числа зубьев звездочек ограничиваются износом шарниров, динамическими нагрузками, а также шумом передач. Чем меньше число зубьев звездочки, тем больше износ, так как угол поворота звена при набегании цепи на звездочку и сбегании с нее равен 360°/z.

С уменьшением числа зубьев возрастают неравномерность скорости движения цепи и скорость удара цепи о звездочку. Минимальное число зубьев звездочек роликовых цепей в зависимости от передаточного отношения выбирают по эмпирической зависимости

Z1min=29-2u³13

В зависимости от частоты вращения z1min выбирают при высоких частотах вращения z1min=19...23; средних 17...19, а при низких 13... 15. В передачах зубчатыми цепями z1min больше на 20...30 %.

По мере износа цепи ее шарниры поднимаются по профилю зуба звездочки от ножки к вершине, что приводит в конечном счете к нарушению зацепления. При этом предельно допустимое увеличение шага цепи тем меньше, чем больше число зубьев звездочки. Поэтому максимальное число зубьев ограничивают при использовании роликовых цепей величиной 100...120, а зубчатых 120...140.

Предпочтительно выбирать нечетное число зубьев звездочек (особенно малой), что в сочетании с четным числом звеньев цепи способствует равномерному износу. Еще более благоприятно, с точки зрения износа, выбирать число зубьев малой звездочки из ряда простых чисел.

Расстояние м е ж д у о с я м и звездочек и длина цепи. Минимальное межосевое расстояние amin (мм) определяют из условий:

отсутствия интерференции (т. е. пересечения) звездочек

amin>0,5(De1+De2)

где De1 и De2наружные диаметры звездочек;

чтобы угол обхвата цепью малой звездочки был больше 120°, т. е. угол наклона каждой ветви к оси передачи был меньше 30°. А так как sin30°=0,5, то amin> d2—d1.

Оптимальные межоссвые расстояния

а = (30... 50) Р.

Обычно межосевые расстояния рекомендуют ограничивать величиной

Amax=80P

Потребное число звеньев цепи W определяют по предварительно выбранному межосевому расстоянию а, шагу Р и числам зубьев звездочек z1 и z2:

W=(z1+z2)/2+2a/P+((z2-z1)/2p)2P/a;

полученное значение W округляют до ближайшего целого (желательно четного) числа.

Эта формула выводится по аналогии с формулой для длины ремня и является приближенной. Первые два члена формулы дают потребное число звеньев при z1=z2, когда ветви цепи параллельны, третий член учитывает наклон ветвей.

Расстояние между осями звездочек по выбранному числу звеньев цепи (без учета провисания цепи) следует из предыдущей формулы.

Цепь должна иметь некоторое провисание во избежание повышенной нагрузки от силы тяжести и радиального биения звездочек.

Для этого межосевое расстояние уменьшают на (0,002... 0.004) а.

Шаг цепи принят за основной параметр ценной передачи. Цепи с большим шагом имеют большую несущую способность, но допускают значительно меньшие частоты вращения, они работают с большими динамическими нагрузками и шумом. Следует выбирать цепь с минимально допустимым для данной нагрузки шагом. Обычно a/80£P£a/25; уменьшить шаг зубчатых цепей при конструировании можно, увеличив ее ширину, а для роликовых цепей - применив многорядные цепи. Допустимые шаги по критерию быстроходности передачи следуют из табл. 3.

§ 4. КРИТЕРИИ РАБОТОСПОСОБНОСТИ И РАСЧЕТА ЦЕПНЫХ ПЕРЕДАЧ. МАТЕРИАЛЫ ЦЕПЕЙ

Цепные передачи выходят из строя по следующим причинам: 1. Износ шарниров, приводящий к удлинению цепи и нарушению ее зацепления со звездочками (основной критерий работоспособности для большинства передач).

2. У с т а л о с т н о е разрушение пластин по проушинам основной критерий для быстроходных тяжелонагружен-иых роликовых цепей, работающих в закрытых картерах с хорошим смазыванием.

3. П р о в о р а ч и в а н и е валиков и втулок в пластинах в местах запрессовки-распространенная причина выхода из строя цепей, связанная с недостаточно высоким качеством изготовления.

4. Выкрашивание и разрушение роликов.

5. Достижение предельного провисания холостой ветви — один из критериев для передач с нерегулируемым межосевым расстоянием, работающих при отсутствии натяжных устройств и стесненных габаритах.

6. Износ зубьев звездочек.

В соответствии с приведенными причинами выхода цепных передач из строя можно сделать вывод о том, что срок службы передачи чаще всего ограничивается долговечностью цепи.

Долговечность же цепи в первую очередь зависит от износостойкости шарниров.

Материал и термическая обработка цепей имеют решающее значение для их долговечности.

Пластины выполняют из среднеуглеродистых или легированных закаливаемых сталей: 45, 50, 40Х, 40ХН, ЗОХНЗА твердостью преимущественно 40...50HRCэ; пластины зубчатых цепей - преимущественно из стали 50. Изогнутые пластины, как правило, изготовляют из легированных сталей. Пластины в зависимости от назначения цепи закаливают до твердости 40.-.50 HRCэ. Детали шарниров валики, втулки и призмы - выполняют преимущественно из цементуемых сталей 15, 20, 15Х, 20Х, 12ХНЗ, 20ХИЗА, 20Х2Н4А, ЗОХНЗА и подвергают закалке до 55.-.65 HRCэ. В связи с высокими требованиями к современным цепным передачам целесообразно применять легированные стали. Эффективно применение газового цианирования рабочих поверхностей шарниров. Многократкого повышения ресурса цепей можно достигнуть диффузионным хромированием шарниров. Усталостную прочность пластин роликовых цепей существенно повышают обжатием краев отверстий. Эффективна также дробеструйная обработка.

В шарнирах роликовых цепей для работы без смазочного материала или при скудной его подаче начинают применять пластмассы.

Ресурс цепных передач в стационарных машинах должен составлять 10...15 тыс. ч работы.

§ 5. НЕСУЩАЯ СПОСОБНОСТЬ И РАСЧЕТ ЦЕПНЫХ ПЕРЕДАЧ

В соответствии с основным критерием работоспособности ценных передач износостоикостью шарниров цени несущая способность цепных передач может быть определена согласно условию, но которому давление в шарнирах не должно превышать допустимого в данных условиях эксплуатации.

В расчетах ценных передач, в частности в учете условий эксплуатации, связанных с величиной пути трения, удобно использовать простейшую степенную зависимость между давлением р и путем трения Pm=С, где С в данных ограниченных условиях может рассматриваться как постоянная величина. Показатель т зависит от характера трения; при нормальной эксплуатации передач с хорошей смазкой т около 3 (в условиях скудной смазки т колеблется от 1 до 2).

Допустимая п о л е з н а я с и л а, которую может передавачь цепь с шарниром скольжения,

F=[p]oA/Kэ;

здесь [р]о— допустимое давление, МПа, в шарнирах для средних эксплуатационных условий (табл. 12.4); A - проекция опорной поверхности шарнира, мм2, равная для роликовых и втулочных ценей dBвн|, [dдиаметр валика; Bвн - ширина внутреннего звена (см. табл. 12.1)]; Kэ - коэффициент эксплуатации.

Коэффициент эксплуатации Кэ, может быть представлен в виде произведения частных коэффициентов:

Кэ=KдKаKнKрегKсмKрежKт.

Коэффициент Kд учитывает динамичность нагрузки; при спокойной нагрузке Kд=1; при нагрузке с толчками 1,2. ..1,5; при сильных ударах 1,8. Коэффициент Kа учитывает длину цепи (межосевое расстояние); очевидно, что чем длиннее цепь, тем реже при прочих равных условиях каждое звено входит в зацепление со звездочкой и тем меньше износ в шарнирах; при а=(30...50)P принимают Kа=1; при а<25Р Ка=-1,25, при a=(60... 80) Р Kа=0,9. Коэффициент Kн учитывает наклон передачи к горизонту; чем больше наклон передачи к горизонту, тем меньше допустимый суммарный износ цепи; при наклоне линии центров звездочек под углом к горизонту до 45° Кн= 1; при наклоне под углом y более 45° Kн=0,15Öy. Коэффициент Крег учитывает регулировку передачи; для передач с регулировкой положения оси одной из звездочек Kрег=1; для передач с оттяжными звездочками или нажимными роликами Kрег=1,1; для передач с нерегулируемыми осями звездочек Крег=1,25. Коэффициент Kcм учитывает характер смазывания; при непрерывном смазывании в масляной панне или от насоса Kсм=0,8, при регулярном капельном или внутришарнирном смазывании Kсм=1, при периодическом смазывании 1,5. Коэффициент Kреж. учитывает режим работы передачи; при односменной работе Kреж=1. Коэффициент Kт учитывает температуру окружающей среды, при –25°<T<150°С принимают Kт=1; при экстремальных условиях Кт>1.

При оценке значения коэффициента эксплуатации Кэ необходимо хотя бы ориентировочно учитывать стохастический (случайный) характер ряда влияющих на него параметров.

Если по расчету значение коэффициента Kэ>2...3, то нужно принять конструктивные меры по улучшению работы передачи.

Приводные цепи проектируют на основе геометрического подобия, поэтому площадь проекции опорной поверхности шарнира для каждого размерного ряда цепей можно представить в виде А=сР2, где с — коэффициент пропорциональности, с»0,25 для однорядных цепей, кроме цепей, не входящих в закономерный размерный ряд: ПР-8-460; ПР-12,7-400-1 и ПР. 12,7-900-2 (см. табл. 12.1).

Допустимая сила F цепи с mp рядами

F= сР2[p]o mp/Kэ,

где тр — коэффициент рядности цепи, учитывающий неравномерность распределения нагрузки по рядам:

zp=1 . . . . 2 3

тp,=1 .... 1,7 2,5

Допустимый момент (Н*м) на малой звездочке

T1=Fd1/2*103=FPz1/2p103

Отсюда шаг цепи

Р=18,5 3ÖT1Кэ/(cz1mp[p]o).

Ориентировочное значение шага однорядной цепи (мм)