Для М строят таблицу - матрицу подвижностей, где линейные и угловые подвижности обозначают литерами соответствующих КП (рис. 2.7) .
Левая часть матрицы соответствует линейным подвижностям (прямая стрелка), правая - угловым (дугообразная) . В рассматриваемом М линейных подвижностей нет (нули в левой части матрицы), угловых - 6 (обозначены литерами КП в правой части) . Избыток угловых подвижностей вокруг оси Y позволяет компенсировать недостаток линейных вдоль осей X и Z, что изображено зигзагообразными стрелками с обозначением звеньев CD и BC, поворот которых обеспечивает линейные подвижности; первой указывают литеру КП, угловая подвижность в которой использована для компенсации.
Степень подвижности рассматриваемого М w = 1, число пассивных ограничений q = 1 (невозможны перемещения по оси Y). Рациональной структуру этого М можно сделать, заменив любую из его КП такой, которая обеспечивает линейную подвижность вдоль оси Y, или дополнительную угловую вокруг осей X или Z .
Глава 3. КИНЕМАТИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМОВ
3.1. Основные понятия и определения. Задачи кинематического анализа.
3.1.1. Кинематические параметры - положение звена относительно системы координат, его скорость и ускорение. Кинематические характеристики - функции, связывающие в М параметры движения ведущего звена с параметрами движения ведомого.
3.1.2. Кинематический анализ - раздел теории М, в котором изучают движение звеньев в М, однако причины, вызывающие движение, не рассматриваются.
Задачи кинематического анализа:
а) определение кинематических параметров звеньев М и их характер ных точек;
б) определение кинематических характеристик М.
3.2. Основные виды движения звеньев
3.2.1. Основные виды движения:
а) поступательное;
б) вращательное;
в) сложное.
Последний - общий случай движения, которое может быть представлено суммой поступательного и вращательного или как последовательность мгновенных вращательных движений.
3.2.2. Поступательное движение. Твердое тело или звено перемещается так, что любая прямая, связанная с телом, остается параллельной своему первоначальному положению (рис. 3.1) . Перемещения, скорости и ускорения всех точек звена соответственно одинаковы. Если положения любых двух точек (например, A и В) определить векторами (r) a и (r) b, то при движении вектор (r) ab = AB не меняется, т.е. скорости (v) a и (v) b равны; также равны и ускорения (w) a и (w) b .
3.2.3. Вращательное движение. Все точки звена движутся по круговым траекториям в параллельных плоскостях, а центры этих окружностей находятся на общей оси вращения (рис. 3.2) .
Вращение характеризуется угловой скоростью omega = dfi/dr и угловым ускорением eps = domega/dtau. Линейная скорость точки при вращательном движении v = (dfi/dtau) x r = omega x r . Линейное ускорение:
w = dv/dtau = (domega/dtau) x r + omega x (dr/dtau) = eps x r + omega x omega x r = (w) t + (w) n . (3.1)
Вектор тангенциального ускорения (w) t направлен по касательной к траектории движения, нормального w (n) - к центру вращения.
Модуль вектора полного ускорения
w = [ (eps*ro) **2 + ( (omega**2) *ro) **2]**0.5 = ro*[eps**2 + omega**4]**0.5, (3.2)
где ro - радиус вращения.
3.2.4. Сложное движение звена. Его обычно представляют суммой двух более простых движений: относительного в подвижной системе координат K' и переносного вместе с этой системой относительно системы координат K, которая обычно неподвижна (рис. 3.3) .
3.2.5. Скорости и ускорения при сложном движении. При сложном (абсолютном) движении приращение вектора скорости (v) a:
d (v)a = d (v)o + dfi x r' + (v) r*dtau,
следовательно, абсолютная скорость (v) a есть сумма переносной (v) e и относительной (v) r скоростей:
(v)a = (v) o + omega x r' + (v) r = (v) e + (v) r . (3.3)
Приращение вектора ускорения при сложном движении:
d (w)a = d (w)o + d (omega x r') + dfi x (v) r + (w) r*dtau ;
d (omega x r') = eps x r' + omega x omega x r' + omega x (v) r ;
dfi x (v) r = omega x (v) r.
Таким образом, ускорение при сложном движении
(w)a = (w) o + eps x r' + omega x omega x r' + 2*omega x (v) r + (w) r. (3.4)
Составляющие абсолютного ускорения:
(w)e = (w) o + eps x r' + omega x omega x r' - переносное ускорение;
(w)k = 2*omega x (v) r - ускорение Кориолиса;
(w)r - относительное ускорение.
3.3. Аксоидные поверхности.
3.3.1. Мгновенные оси и аксоидные поверхности. Сложное движение звена можно представить последовательностью мгновенных поворотов вокруг мгновенных осей, меняющих свое положение в пространстве (рис.3.4) . Последовательные положения мгновенных осей в системах координат K (неподвижной) и K' (подвижной) образуют две аксоидные поверхности - неподвижную и подвижную, в каждый момент времени контактирующие друг с другом по прямой линии - мгновенной оси. В общем случае аксоиды катятся друг по другу со скольжением. Формы аксоидных поверхностей определяются видами переносного и относительного движений.
3.3.2. Гиперболоидные аксоиды. Переносное движение совершается вокруг оси omega1, относительное - вокруг оси omega2, оси скрещиваются под углом Sigma (рис. 3.5 и 3.6) . Мгновенная ось - Omega, вдоль нее
аксоиды проскальзывают со скоростью v . Расстояние O1O2 = a, углы delta1
и delta2 определяют по формулам:
a = (v/Omega) [ (1+ 2i*cos (Sigma) + i**2) / (i*sin (Sigma) )], (3.5)
где Omega = omega1 + omega2 ; i = omega1/omega2 ;
O1P/O2P = 1/ (i*cos (Sigma) = (omega2/omega1) /cos (Sigma) ; (3.6)
delta1 = arc tg [sin (Sigma) / (i*cos (Sigma) ] ;
delta2 = Sigma - delta1 . (3.7)
3.3.3. Конические аксоиды. Оси вращательных движений пересекаются, аксоиды перекатываются друг по другу без скольжения (рис. 3.7) .
Углы при вершинах конусов delta1 и delta2 определяют по формулам (3.7) .
3.3.4. Цилиндрические аксоиды. Оси вращательных движений параллельны (рис. 3.8, а - при одинаковых знаках omega1 и omega2, б - при разных) . Цилиндры катятся друг по другу без скольжения; положение мгновенной оси определяют по формуле (3.6) при Sigma = 0:
O1P/O2P = omega2/omega1 . (3.8)
3.3.5. Сложение поступательных движений (рис.3.9) . Поверхность неподвижного аксоида вырождается в траекторию перемещения центра подвижной системы координат K', в которой звено движется поступательно.
3.4. Мгновенные центры скоростей и ускорений.
3.4.1. Мгновенный центр скоростей в плоском движении звена точка, линейная скорость которой в данный момент равна нулю. Для плоского движения - это проекция мгновенной оси на плоскость движения (рис. 3.10) .
Для точек звена выполняется условие
(v)a/AP = (v) b/BP = ... = omega, (3.9)
где omega - угловaя скорость звена; P - мгновенный центр.
При плоском движении аксоиды проецируются на плоскость в виде центроида - геометрических мест мгновенных центров скоростей.
3.4.2. Мгновенный центр ускорений в плоском движении - точка, линейное ускорение которой в данный момент равно нулю.
Из (3.2) для любой точки звена (рис. 3.11) следует:
(w)a/AQ = (w) b/BQ = ... = [eps**2 + omega**4]**0.5,
где eps - угловое ускорение звена; Q - мгновенный центр.
Направление на мгновенный центр ускорений определяется углом между векторами нормального (w) n и полного w ускорений.
Глава 4. КИНЕМАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ МЕХАНИЗМОВ
4.1. Кинематические характеристики механизмов.
4.1.1. Кинематические характеристики - зависимости, связывающие в М положения, скорости и ускорения ведущего звена с соответствующими параметрами ведомого. Эти функции полностью определяются структурой и геометрическими параметрами М.
4.1.2. Функция положения М - зависимость положения ведомого звена от положения ведущего. В общем виде для М (рис. 4.1) :
fin = П (fi1) . (4.1)
4.1.3. Функция скорости М - связь скоростей ведомого звена omegan и ведущего omega1 - производная функции положения:
dfin/dtau = d[П (fi1) ]/dtau = {d[П (fi1) ]/dfi1}* (dfi1/dtau),
d[П (fi1) ]/dfi1= П' (fi1) = omegan/omega1 . (4.2)
Передаточное отношение - величина, обратная функции скорости:
(i)1n = omega1/omegan = 1/П' (fi1) . (4.3)
4.1.4. Функция ускорения М - связь ускорений ведомого звена epsn и ведущего eps1 - вторая производная функции положения:
d2fin/dtau2 = d|{d[П (fi1) ]/dtau}* (dfi1/dtau) |/dtau =
= П'' (fi1) * (dfi1/dtau) **2 + П' (fi1) * (d2fi1/dtau2) =
= П'' (fi1) **omega1**2 + П' (fi1) *eps1 ;
Если принять eps1 = 0, то
П'' (fi1) = d2[П (fi1) ]/dfi12 = epsn/omega1**2 . (4.4)
Следовательно, функция ускорения определяет ускорение ведомого звена М при постоянной скорости ведущего.
4.2. Методы определения кинематических характеристик.
4.2.1. Метод векторного замкнутого контура. Сущность этого аналитического метода: звенья М представляют векторами, которые должны образовать замкнутый контур, т.е. сумма проекций звеньев- векторов на оси произвольно выбранной системы координат должна быть равна нулю.
Уравнение проекций позволяет найти функцию положения, а дифференцирование ее даст функции скорости и ускорения. Для М на рис. 4.2 уравнения проекций на оси X и Z :
r*cos (fi1) + l*cos (fi2) - s = 0;
h + r*sin (fi1) - l*sin (fi2) = 0.
Функция положения
dzet = s/r = cos (fi1) +
+ [ (l/r) **2 - (h/r + sin (fi1) )**2]**0.5 (4.5)
Функции скорости и ускорения:
П' (fi1) = ddzet/dfi1 = v3/ (r*omega1) ;
П'' (fi1) = d2dzet/dfi12 = w3/ (r*omega1**2) .
4.2.2. Графоаналитический метод планов. Сущность его состоит в построении векторных диаграмм, изображающих скорости и ускорения М для одного его положения, т.е. получают мгновенные значения кинематических характеристик М. Исходным является план положений М - изображение М в масштабе при некотором положении ведущего звена (рис. 4.3 а) .
План скоростей - графическое решение векторных уравнений, связывающих скорости абсолютного, переносного и относительного движений точек звеньев (рис. 4.3 б) . Аналогично строится план ускорений (рис. 4.3 в) .
4.3. Соотношение скоростей в высших кинематических парах.
4.3.1. Эти соотношения необходимо определять при анализе и синтезе сложных М с высшими парами. В таких парах звенья в общем случае катятся друг по другу со скольжением. Относительное движение звеньев можно представить, введя в рассмотрение подвижные аксоиды, жестко связанные со звеньями пары.