7.4.3. Термопластические массы - после затвердения детали могут быть вновь размягчены нагревом. Это капрон (поликапролактам), полиамидные смолы, поливинилхлорид, полистирол, полиэтилен, фторопласт. Прозрачный полиакрилат - органическое стекло может быть окрашено в любые цвета.
Эпоксидные клеи - смолы, по прочности клеевого шва приближаются к металлам.
7.5. Резина, стекло, керамика.
7.5.1. Резина - отвержденный добавкой серы и нагревом каучук.
Широко применяется как эластичный герметизирующий и электроизоляционный материал. Эбонит - твердая резина (серы 45-60%), используется для электротехнических изделий.
7.5.2. Стекла. Прозрачные в различных диапазонах волн в зависимости от исходных материалов - кварцевого или кремниевого песка. Кварцевое стекло прозрачно для тепловых лучей. Ситаллы - стекла с кристаллической структурой, радиопрозрачны в различных диапазонах.
7.5.3. Керамика. Получается спеканием пластичных масс из различных минералов; электроизоляционный, теплозащитный и радиотехнический материал. Пористая керамика дает самосмазывающиеся подшипниковые материалы - бронзографит и железографит. Естественная керамика - корунд, сапфир, агат - материалы для подшипниковых опор; очень износостойка.
Глава 8. Работа деталей в конструкциях при основных видах нагружения.
8.1. Основные понятия и определения.
8.1.1. Внутренние усилия в материале. При нагружении элементов конструкции внешними усилиями в них появляются внутренние силы упругости - реакция вещества на внешнее силовое воздействие. Под влиянием усилий возникают деформации: упругие - исчезающие после снятия внешних нагрузок, и пластические - остающиеся. Большинство деталей должно работать в области упругих деформаций.
8.1.2. Основные допущения. При определении внутренних сил вводят следующие допущения:
а) сплошности материала;
б) его однородности;
в) для неслоистых материалов - изотропности.
Влияние многих усилий учитывают с помощью принципа независимости их действия: результат воздействия системы сил на тело равен сумме результатов воздействия отдельных составляющих.
8.2. Определение внутренних усилий. Напряжения и деформации
8.2.1. Метод сечений. Для определения внутренних усилий условно рассекают в интересующеи месте материал плоскостью и одну из отсеченных частей вместе с приложенными к ней усилиями отбрасывают. Для сохранения оставшейся части в равновесии в сечении к ней необходимо приложить в общем случае силу P и момент T (рис.8.1) :
P = Px + Py + Pz ; T = Tx + Ty + Tz, (8.1)
где Px - нормальная сила в сечении, Py и Pz - касательные, Tx - крутящий момент, Ty и Tz - изгибающие моменты.
Значения P и T находят из условия равновесия оставшейся части элемента конструкции.
8.2.2. Напряжения. Интенсивность внутренних сил упругости, действующих в сечении - напряжение:
sig = lim (delP/delS) при delS --> 0 . (8.2)
Полное напряжение - сумма нормального (sig) n и касательного (tau) n напряжений (рис.8.2) .
8.2.3. Деформации - изменение размеров и формы детaли (или ее элементарных обьемов) под действием напряжений, линейные eps - нормальных sig, угловые gam - касательных tau (рис.8.3.) .
8.2.4. Напряженное состояние - совокупность напряжений, действующих на взаимно перпендикулярных гранях элементарного обьема в рассматриваемой зоне материала. В общем случае существуют три нормальных и шесть касательных напряжений (рис. 8.4.) . Сечения всегда можно ориентировать так, чтобы касательные напряжения отсутствовали. Главные площадки - сечения, в которых нет касательных напряжений; нормальные напряжения на них называют главными. Любое напряженное состояние можно характеризовать тремя главными напряжениями: sig1 > sig2 > sig3 . Существуют три вида напряженных состояний:
а) обьемное - имеются все главные напряжения;
б) плоское - существуют только два из них;
в) линейное - действует только одно главное напряжение.
8.2.5. Оценка прочности элементов конструкции. Производится сравнением наибольших напряжений - нормальных sig или касательных tau с их допустимыми значениями (sig) p и (tau) p - предельными, при которых деталь все еще выполняет свою функцию. Условия прочности:
sig < (sig) p ; tau < (tau) p . (8.3)
Значения (sig) p и (tau) p определяют экспериментально на реальных деталях или испытаниями образцов из исследуемого материала.
8.2.6. Основные виды нагружения стержней. Реальные детали представляют стержневыми элементами, для которых выделяют четыре основных вида нагружения, возникающих под действием основных компонентов силы P и момента T (рис. 8.5) .
8.3. Основной вид нагружения - растяжение (сжатие)
8.3.1. Общая характеристика. Растяжение (сжатие) - одноосное напряженное состояние, возникающее под действием равных сил, противоположно направленных по оси стержня. Волокна материала, параллельные этой оси, удлиняются (или укорачиваются) ; плоские сечения, нормальные оси стержня, остаются плоскими и нормальными и при нагружении стержня, а напряжения в них распределены равномерно.
8.3.2. Напряжения при растяжении. В сечениях стержня под действием внешних сил P возникают напряжения (sig) x (рис.8.6) :
P = int[ (sig) x* (dS) alf]S; (sig) x = P/int[ (dS) alf]S = P/ (S)alf. (8.4)
Между напряжениями в нормальном сечении sig = P/S и (sig) x существует зависимость: (sig) x = sig*cos (alf), а (sig) x можно представить суммой нормального (sig) n и касательного (tau) n (рис. 8.7) :
(sig) n = (sig) x*[cos (alf) ]**2; (tau) n = 0.5* (sig) x*sin (2*alf) . (8.5)
Максимальные нормальные напряжения (sig) nmax = sig - в нормальном сечении при alf = 0, максимальные касательные (tau) nmax = sig/2 при alf = 45 грд .
8.3.3. Деформации при растяжении. Упругие деформации волокон материала вдоль оси стержня пропорциональны напряжениям:
eps = sig/E, sig = E*eps, (8.6)
где E - модуль упругости первого рода (модуль Юнга), один из основных механических параметров материала.
Выражение (8.6) -закон Гука при растяжении; для стержня с жесткостью E*S может быть записан в такой форме:
eps = del (l)/l = P/E*S . (8.7)
8.3.4. Поперечные деформации стержня. При продольных деформациях eps появляются поперечные деформации: eps' = del (d)/d, где del (d) - изменение поперечного размера d. Отношение nju = eps'/eps - коэффициент Пуассона; теоретически 0 < nju < 0.5. Для абсолютно пластичных материалов nju = 0, для абсолютно упругих nju = 0.5 ; для большинства конструкционных материалов nju = 0.25 - 0.35.
8.4. Экспериментальное определение механических параметров материалов
8.4.1. Диаграмма напряжений при растяжении. Это - зависимость sig - eps, полученная при растяжении стандартных образцов из исследуемого материала на испытательных машинах; строится условной - без учета поперечных деформаций, т.е. растягивающее усилие относят к первоначальному сечению образца: sig= P/ (S)0. Материалы делят на две группы: пластичные - с большими относительными удлинениями и хрупкие - с малыми.
8.4.2. Диаграмма растяжения пластичных материалов (рис.8.8) .
Характерные напряжения: (sig) у - предел упругости; (sig) пц - предел пропорциональности (до этого напряжения выполняется закон Гука) ; (sig) т предел текучести (появляются пластические деформации) ; (sig) в - предел прочности, после его превышения на образце появляется сужение - шейка, и в дальнейшем происходит разрыв. Если нагрузку снять при напряжении sig > (sig) у, появится остаточная деформация. Пределу текучести соответствует удлинение, равное 0.2%, которое обозначают (eps) 0.2. Полное остаточное удлинение (eps) ост для пластичных материалов составляет 5-25%.
8.4.3. Диаграмма растяжения хрупких материалов (рис.8.9) .
Она нелинейна и на ней нет характерных точек и зон. В качестве условного предела текучести принимают напряжение (sig) 0.2 . Разрыв происходит без образования шейки при достижении напряжения (sig) в . Обычно остаточное удлинение (eps) ост < 5%.
8.4.4. Параметры твердости характеризуют сопротивляемость материала внедрению в него острого твердого тела - индентора; выражаются условными числами твердости: Бринелля НВ - для низкой и средней твердости,
Роквелла HR и Виккерса HV - для средней и высокой твердости, которые определяют, вдавливая в поверхность материала соответственно стальной шарик, алмазный конус, алмазную четырехгранную пирамиду.
Для многих материалов твердость HB связана с пределом прочности простым соотношением: (sig) в = k*HB; для большинства сталей k = 0.34 - 0.36; для деформируемых алюминиевых сплавов k = 0.38.
Глава 9. РАБОТА СТЕРЖНЕЙ ПРИ СДВИГЕ И КРУЧЕНИИ
9.1. Работа стержней при сдвиге
9.1.1. Общая характеристика. Сдвиг - плоское напряженное состояние, возникающее под действием поперечных сил (рис.9.1) . Соседние бесконечно близкие сечения сдвигаются по отношению друг к другу, что вызывает появление касательных напряжений tau . В условиях сдвига в конструкциях работают крепежные детали (винты, штифты), валы, стойки.
9.1.2. Закон парности касательных напряжений и главные напряжения при сдвиге. Напряжения tau всегда парны в двух перпендикулярных сечениях, что следует из рассмотрения равновесия элементарного обьема материала в зоне сдвига (рис.9.2) . Парные касательные напряжения приводят к появлению двух главных нормальных напряжений: sig1 = tau - растягивающего и sig2 = -tau - сжимающего, повернутых на 45 грд относительно оси стержня (рис.9.3) .
9.1.3. Деформация при сдвиге и закон Гука. Картина деформации элементарного обьема изображена на рис.9.4. Линейный сдвиг - а, угловой - gam, del (dl) - удлинение диагонали элемента dl. Связь деформаций:
eps = del (dl) /dl = (a/ (2**0.5) *[1/ (2**0.5*dx) ] = gam/2 .
С учетом поперечных деформаций от напряжений sig2 закон Гука при сдвиге имеет вид:
eps = sig1/E + nju*sig2/E = tau* (1+ nju) /E ;
tau = {E/[2* (1+ nju) ]}*gam = G*gam ; (9.1)
G = E/[2* (1+ nju) ],
где G - модуль упругости второго рода, или модуль сдвига.
Напряжения и закон Гука для стержня жесткостью G*S:
tau = P/S ; gam = P/ (G*S) . (9.2)
9.1.4. Прочность при сдвиге. Условия прочности проверяют и по нормальным, и по касательным напряжениям: