Смекни!
smekni.com

Механизмы и несущие конструкции радиоэлектронных средств (стр. 8 из 9)

10.4.4. Расчет устойчивости. Для оценки устойчивости рассчитывают гибкость стержня lam, и если lam > (lam) пр, определяют критическую силу (P) кр по формуле (10.21), (sig) кр по формуле (10.22) .

Условие устойчивости: (sig) у = (sig) кр/nу, где nу = 1.8 - 3.2 коэффициент запаса по устойчивости.

Глава 11. Контактная прочность. Прочность при переменных нагрузках и сложных видах нагружения.

11.1. Контактная прочность деталей.

11.1.1. Общая характеристика. При контактировании поверхностей, из которых одна или обе криволинейны (теоретически контакт происходит по линии или в точке), возникают контактные напряжения и контактные деформации. Их определяют методами теории упругости, считая, что в контактной зоне образуется в общем случае эллиптическая площадка малых размеров, давление на которой распределяется также по закону эллипса (рис. 11.1) :

q (x,y) = qm*[1 - (x/a) **2 - (y/b) **2]**0.5, (11.1)

где qm - давление в центре площадки с полуосями a и b.

11.1.2. Напряжения в зоне контакта. Значение sig можно найти из условий равновесия:

P = int{int[sig (x,y) *dx*dy]} ; (sig) max = 1.5*P/ (pi*a*b) . (11.2)

Размеры полуосей контакта:

a = alf*[P* (ro) пр/ (E)пр]** (1/3) ;

b = bet*[P* (ro) пр/ (E)пр]** (1/3),

где (ro) пр - приведенный радиус кривизны контактирующих поверхностей (рис.11.2) ; (E) пр - приведенный модуль упругости:

(ro) пр = 4/ (1/ro11 + 1/ro12 + 1/ro21 + 1/ro22 ) ;

(E)пр = (8/3) /{[1 - (nju1) **2]/E1 + [1 - (nju2) **2]/E2} . (11.3)

E1 и E2, nju1 и nju2 - соответственно модули упругости и коэффициенты Пуассона для материалов контактирующих поверхностей; ro11 и ro21, ro12 и ro22 - наибольшие и наименьшие радиусы кривизны.

Коэффициенты alf и bet зависят от взаимной ориентировки главных радиусов кривизны ro11 и ro21 и приведены в справочниках.

Для контакта двух шаров с радиусами R1 и R2 :

(sig) max = 0.578*| P* (1/R +- 1/R) **2/{[1 - (nju1) **2]/E1 +

+ [1 - (nju2) **2]/E2} |** (1/3) . (11.4)

Для цилиндрических поверхностей с параллельными образующими и длиной контактной линии l

(sig) max = 0.564*| P* (1/R +- 1/R) **2/l{[1 - (nju) **2]/E1 + [1 - (nju2) **2]/E2} |** (1/3) . (11.5)

11.1.3. Проверака контактной прочности. Материал в зоне контакта находится в состоянии всестороннего сжатия, поэтому допускаемые напряжения при расчете контактной прочности выше, чем предел прочности при одноосном сжатии (sig) c в 1.5 - 1.8 раза. Для различных материалов допустимые напряжения (sig) кp приведены в справочниках.

11.2. Прочность при повторно-переменных нагрузках

11.2.1. Усталость материалов. Это - разрушение материалов при многократном приложении нагрузки; способность сопротивляться такому разрушению - выносливость материала. Для усталостного разрушения необходимо, чтобы действующие напряжения превысили напряжения, равные пределу выносливости. Усталость материалов связана с появлением местных нарушений целостности в зоне межкристаллических соединений вследствие пластических сдвигов и появления микротрещин, которые в дальнейшем расширяются и разрушают материал.

11.2.2. Параметры, определяющие усталостную прочность. Совокупность всех напряжений за один период нагружения - цикл напряжений. На усталостную прочность влияют (sig) max - максимальное и (sig) min - минимальное напряжения, коэффициент асимметрии цикла r = (sig) min/ (sig) max и число циклов нагружения (N) ц. При постоянной нагрузке r = +1, при симметричной знакопеременной r = -1; циклы с последним коэффициентом наиболее опасны для материалов. Предел выносливости - напряжение, которое материал выдерживает без разрушения при любом числе циклов, обозначают (sig) -1 и определяют на специальных образцах опытным путем. Существуют две группы материалов: с явно выраженным пределом усталости и без такового (рис.11.3) . Для сталей предел выносливости достигается при (N) ц = 10**7, для цветных материалов при (N) ц = (5- 10) .10**7; для материалов, у которых этот предел практически определить невозможно, вводят понятие условного предела выносливости при ограниченном числе циклов нагружения.

11.2.3. Факторы, влияющие на выносливость деталей. Наибольшее влияние оказывают:

а) концентрация напряжений;

б) состояние поверхности;

в) размеры детали.

Концентрация напряжений - местное увеличение напряжений в зонах изменения формы и размеров деталей (сужений, канавок, отверстий и т.п).

Коэффициент концентрации напряжений (k) sig = [ (sig) -1]/[ (sig) -1]к > 1, где [ (sig) -1]к - предел выносливости материала детали с концентратором напряжений.

Состояние поверхности сказывается в том случае, если она не полирована. Микровыступы являются микроконцентраторами напряжений. Поэтому вводят коэффициент bet = [ (sig) -1]/[ (sig) -1]п < 1, где [ (sig) -1]п - предел выносливости для полированной детали.

Размеры детали влияют на предел выносливости тогда, когда они намного превышают размер испытательного образца, на котором определяют предел выносливости (для стандартного образца d = 10 мм) ; это учитывают коэффициентом eps = [ (sig) -1]/[ (sig) -1]об < 1, где [ (sig) -1]об - предел выносливости образца.

11.2.4. Расчет прочности при переменных нагрузках. Допустимое напряжение определяют на базе предела выносливости для заданного числа циклов или на базе (sig) -1, вводя коэффициенты концентрации нагрузки, состояния поверхности и размеров детали:

sig = [ (sig) -1) p = [ (sig) -1]*bet*eps/ (k)sig . (11.6)

11.3. Прочность при сложном нагружении

11.3.1. Сложное напряженное состояние. Возникает как результат одновременного действия нескольких видов нагружения; в общем случае все три главных напряжения sig1, sig2 и sig3 не равны нулю (рис. 11.4) .

Экспериментальная оценка в этом случае практически исключена из-за большого количества соотношений между sig1, sig2 и sig3 . Поэтому вводят критерии прочности, учитывающие влияние на прочность материала какоголибо одного силового фактора или группы таких факторов. Основная трудность при образовании таких критериев заключается в том, что предельное напряженно-деформированное состояние даже для структурно-однородных материалов в действительности определяется большим числом параметров: значениями главных напряжений sig1, sig2 и sig3, чувствительностью материалов к касательным напряжениям, различной прочностью при растяжении и сжатии и т.п. При этом сложное напряженное состояние приводят к эквивалентному одноосному. Условие прочности - сравнение эквивалентного напряжения (sig) экв с допустимым для одноосного растяжения [ (sig) рас]p :

(sig) экв < [ (sig) рас]p . (11.7)

11.3.2. Универсальный критерий прочности Писаренко-Лебедева.

Предполагает, что наступление предельного состояния определяется способностью материала воспринимать как нормальные, так и касательные напряжения. Эквивалентное напряжение находят из выражения

(sig) экв = X* (sig) i + (1 - X) *sig1 . (11.8)

Интенсивность напряжений (sig) i определяют из выражения для удельной потенциальной энергии формоизменения элементарного обьема материала:

(u)ф = [ (sig) i]**2/2*E ;

(sig) i = (sig1**2 + sig2**2 + sig3**2 - sig1*sig2 -

sig1*sig3 - sig2*sig3) **0.5 .

Коэффициент X = [ (sig) +]/[ (sig) -] учитывает различную сопротивляемость материала предельным напряжениям растяжения [ (sig) +] и сжатия

[ (sig) -] . Для реальных конструкционных материалов 0 < X < 1; для абсолютно хрупких X = 0, для абсолютно пластичных X = 1. Для плоского напряженного состояния sig3 = 0 и (sig) i = (sig1**2 + sig2**2 - sig1*sig2) **0.5 .

11.3.3. Допустимые напряжения (sig) p определяют при одноосном растяжении на базе предела текучести (sig) т для пластичных материалов или предела прочности (sig) в - для хрупких:

(sig) p = (sig) т/n ; (sig) p = (sig) в/n, (11.9) где n - коэффициент запаса прочности, определяемый функциональным назначением детали.

РАЗДЕЛ 3. ОСНОВЫ ВЗАИМОЗАМЕНЯЕМОСТИ И ЭЛЕМЕНТЫ ТЕОРИИ ТОЧНОСТИ МЕХАНИЗМОВ

Глава 12. Функциональная взаимозаменяемость и параметры точности

12.1. Функциональная взаимозаменяемость при производстве изделий

12.1.1. Функциональная взаимозаменяемость (ВЗ) - это принцип проектирования, производства и эксплуатации изделий, обеспечивающий получение заданных функциональных параметров изделия при сборке последнего из независимо изготовленных узлов и деталей или при замене этих деталей в процессе эксплуатации и ремонта. Обеспечивается благодаря широкой стандартизации и унификации в промышленности.

Стандартизация - установление и применение в области науки и техники обязательных правил, норм и требований, обеспечивающих получение оптимальных результатов целенаправленной деятельности (развития отраслей народного хозяйства, научных исследований, выпуска промышленной продукции и т.п.). В зависимости от сферы действия существуют государственные стандарты (ГОСТ), республиканские (РСТ), отраслевые (ОСТ), стандарты предприятий (СТП) .

В современном машиностроении и приборостроении стандартизованы большинство разьемных соединений, многие типовые узлы (упругие элементы, подшипники, муфты), механические передачи и т.п.

Унификация - сокращение номенклатуры материалов или изделей одинакового функционального назначения, осуществляемое благодаря расширению диапазона показателей отдельного устройства. Широко применяется внутри предприятий и отраслей промышленности.

12.1.2. Геометрическая ВЗ - частный случай функциональной, когда обеспечивается ВЗ по геометрическим параметрам - линейным и угловым размерам; является основой для ВЗ по другим функциональным параметрам. Обеспечивается стандартизацией во всех отраслях промышленности как для самих изделей, так и их узлов и деталей, технологического и контрольно-измерительного оборудования, обрабатывающего инструмента. Стандартизованы нормальные линейные размеры (диаметры, длины), допуски и посадки, размеры резьб, присоединительные размеры валов и осей и т.д.

12.2. Параметры точности механизмов

12.2.1. Точность геометрических и кинематических параметров.

Для обеспечения функциональной и геометрической ВЗ параметры М должны находиться в заданных пределах, т.е. должна быть обеспечена их точность.

Точность параметра - степень приближения его к номинальному значению, наилучшим образом обеспечивающему функциональную ВЗ. Параметры реального М - действительные - сравнивают с параметрами теоретического - номинальными и получают оценку точности.