Для определения скорости точки С достраиваем отрезок ab в соотношении
Продолжая построение плана скоростей на Рис. 7, находим скорости точек
Ускорения точек и угловые ускорения звеньев, совершающих плоскопараллельное движение, будем определять с использованием теоремы о сложениях ускорений в плоском движении. Данную теорему реализуем графически, в виде отдельных многоугольников ускорений на схеме механизма (Рис. 8) и с помощью плана ускорений (Рис. 9), построенных в масштабе ускорений МA.и МА1 соответственно.
Вращение ведущего звена ОА является равномерным с угловой скоростью
Определение ускорений начинаем с точки В; траектория которой известна. Взяв за полюс точку А, применим, с учетом (2.3), теорему о сложении ускорений к точке В звена АВ :
(2.4)
где
вокруг полюса А.
движении звена АВ вокруг полюса А.
Точка В совершает возвратно поступательное движение вдоль горизонтально направляющей.Следовательно, нам известна прямая, на которой лежит вектор ускорения точки В. Найдем ускорения:
Построив в точке В механизма замкнутый многоугольник ускорений на Рис. 8 в масштабе ускорений, измеряем значения неизвестных векторов:
Построение многоугольника ускорений проводим следующим образом:
Из точки В проводим, в масштабе ускорений, вектор ускорения полюса
Из конца вектора
Из точки В, в направлении прямой OB откладываем линию определяющую возможное направление вектора
Данная линия проводится до пересечения с прямой, перпендикулярной АВ, характеризующей направление вектора
Точка пересечения этих прямых является точкой, в которой сходятся концы векторов
Угловые ускорения звеньев определяем по формулам
Направления угловых ускорений, которые определяем по направлению вектора
Теперь зная угловое ускорение звена АВ мы можем найти ускорения точек С и М. Сначала найдём ускорение точки С.
Взяв за полюс точку А, применим, с учетом (2.3), теорему о сложении ускорений к точке С звена АС:
(2.6)
где
вокруг полюса А.
движении звена АС вокруг полюса А.
Решаем векторное уравнение (2.6) с учётом выбранного масштаба ускорений, где –
Получим
Аналогично для точки М