Вспомогательное время включает:
1) Время на заправку кассеты с электродной проволокой tп;
2) Время на осмотр и очистку кромок свариваемых элементов tкр;
3) Время на измерение и клеймение швов tкл;
4) Время на установку и поворот изделия, его закрепление tизд.
Время на заправку кассеты принимаем равным 5 минут. (tп = 5 мин)
Время на измерение и осмотр шва определяем путем умножения длины шва на 0,35 для нижнего, вертикального и горизонтального швов.
tкр (tбр) =
(2.10 4)где nс - количество слоев при сварке за несколько проходов;
Lш - длина шва в метрах.
tкр =5,36
0,6=3,2 мин.Время на очистку одного метра шва принимаем 0,6 мин.
Время на установку клейма
tкл = 0,03 мин на один знак
Время на установку, поворот и закрепление деталей изделия в кондукторе принимаем равным минуты (tизд = 17 мин).
Время на перемещение сварщика при свободном переходе при длине перехода до 6 м
tпер = 0,2 мин.
Вспомогательное время определим по формуле [1]
tв = tп + tкр + tбр + tкл + tизд + tпер (2.10 5)
tв = 5 + 3,2 + + 0,03 + 17 + 0,2 = 25,43 мин.
Подготовительно-заключительное время tп. з. включает в себя такие операции, как получение производственного задания, инструктаж, получение и сдача инструмента, осмотр и подготовка оборудования к работе и т.д. В серийном производстве tп. з. =10% от tо.
tп. з. =0,1*8,01=0,8 мин
Время на обслуживание рабочего места включает в себя время на установку режима сварки, наладку полуавтомата, уборку инструмента и т.д.
tобс = (0,06-0,08) tо
tобс = 0,08*8,01 = 0,64мин.
Время перерывов на отдых и личные надобности при сварке в удобном положении составляет 7% от основного время
tп = 0,07tо
tп = 0,07*8,01 = 0,56 мин.
Определяем общее время на выполнение сварочной операции
tсв = 8,01 + 0,8 + 25,43 + 0,64 + 0,56 = 35,44 мин.
Одним из важнейших разделов основ технологии машиностроения является учение о базах. Правильное назначение их и рациональный выбор базирующих поверхностей в значительной степени предопределяет точность выполнения заданных размеров, конструкцию приспособлений и оборудования, производительность и экономичность процесса изготовления. Базирование необходимо для всех стадий создания изделия: конструирования, изготовления, измерения, а также при рассмотрении деталей в сборе. Вопрос о назначении рациональных баз оказывает принципиальное влияние на построение технологии, которая должна определяться параллельно с проектированием нового изделия, начиная со стадий разработки технологического предложения и эскизного проекта.
В настоящее время имеется глубоко разработанная теория базирования деталей при механической обработке. На её основе созданы ГОСТ 21495 и ГОСТ 3.1107, устанавливающие применяемые в науке и технике термины и определения базирования и единые условные обозначения опор и зажимов, используемые в технологической документации. В тоже время базированию и базам в сварочном производстве на предприятиях республике не уделяется должного внимания.
При разработке технологических процессов зачастую не разрабатываются схемы базирования деталей при сборке под сварку, имеют место различия в толковании, применении и графическом обозначении отдельных специфических баз.
Основные принципы базирования сварных конструкций.
В соответствии с положением теории базирования о шести степенях свободы и шести удерживающих связях, необходимых для ориентации твердого тела в пространстве, технологи в своей работе руководствуются известным правилом шести точек, из которого следует, что для полной ориентации детали в приспособлении или механизме необходимо и достаточно шесть удерживающих жестких двусторонних связей.
Поэтому при конструировании приспособлений или механизмов необходимо обеспечить, кроме шести опорных точек, плотное и непрерывное соприкосновение соответствующих поверхностей деталей с опорными точками при помощи прижимов, которые и образуют двусторонние удерживающие связи. Совокупность установочной, направляющей и опорной баз образуют систему координат (комплект баз) призматической детали. Общие понятия и основные, положения теории базирования, определенные ГОСТ 21495необходимо применять при разработке схем базирования сварных узлов.
Правильное базирование обеспечивает наивысшую фактическую точность взаимного расположения деталей и выполнения размеров, заданных в конструкции.
Для повышения точности и надежности ориентации кабины трактора при выборе базы в качестве установочной принималась поверхность с наибольшими размерами, позволяющими расположить три условные опорные точки достаточно далеко друг от друга, в качестве направляющей базы с той же целью принята самая длинная поверхность.
Схема базирования кабины представлена на листе КТ 044/06.04.00.000 ДП
В общем случае сборочно-сварочное приспособление состоит из основания, фиксирующих или установочных элементов, прижимов, поворотных устройств, вспомогательных деталей и устройств.
Основание представляет собой элемент, объединяющий в одну конструкцию все части приспособления. Основание должно обладать жесткостью и прочностью, обеспечить точность расположения деталей. Основания изготавливают различными способами: сварочно-литые, сварочно-штампованные, сварочно-кованные. При проектировании сварочных оснований придерживаются правил. Необходимо чтобы:
свариваемые детали имели одинаковую толщину;
одним швом соединялись не более двух деталей;
расположение швов создавало минимальную деформацию основания;
обеспечивалось симметричное расположение ребер, усиливающих основание приспособления, а их приварка проводилась с двух сторон.
При конструировании литых оснований необходимо избегать острых углов и резких переходов. Основания поворотных приспособлений должны иметь полки или фланцы с отверстиями для крепления к планшайбам кантователей, вращателей или кондукторов.
Установочные элементы (опоры, упоры, пальцы, штыри, призмы и др.) обеспечивают правильную установку деталей узла в сборочных приспособлениях. Требования, предъявляемые установочным элементам:
1) обеспечение требуемой точности;
2) возможность удобной установки и сварки деталей;
3) обеспечение необходимой прочности и жесткости, предотвращающей деформацию изделия;
4) возможность свободного съема изделия.
Опоры бывают основные и вспомогательные. Основные опоры определяют положение в пространстве, лишая степеней свободы; они жестко закрепляются в приспособлении запрессовкой или сваркой. Вспомогательные опоры предназначены для придания детали дополнительной жесткости и устойчивости. Чаще всего опоры изготавливают в виде штырей с плоской, сферической, насеченной головкой или в виде опорных пластин. Опорные пластины с косыми пазами и закрепляются на вертикальных стенках. Выбор типа и размеров форм зависит от размеров и состояния базовых поверхностей деталей.
Упоры предназначены для фиксирования деталей по боковым поверхностям. Они бывают постоянные, съемные, откидные, отводные, поворотные. Упоры приваривают к основаниям, приспособлениям или привинчивают с фиксацией штифтами. Для фиксации деталей по двум плоскостям служат угловые упоры.
После определения схемы базирования, выбора опор и установочных устройств, а также их расположения на корпусе приспособления необходимо выбрать схему закрепления заготовки и конструкцию зажимного устройства, исходя из следующих требований: в процессе закрепления силы зажима не должны сдвигать заготовку и нарушать ее положение, полученное при базировании; силы зажима должны быть достаточными, чтобы не допустить смещение заготовки. Силы зажима не должны деформировать заготовку; зажимные устройства должны быть надежными и безопасными в роботе, простыми по конструкции и удобными в управлении; конструкция зажимных устройств должна обеспечить их быстродействие, равномерное закрепление заготовок и самоторможение; места приложения сил закрепления, как правило, должно выбираться напротив опорных элементов приспособления.
Кроме того, необходимо учитывать серийность и условия производства, оптимальность расхода металла экономические вопросы проектирования и изготовления приспособлений.
Исходя из выше перечисленных требований в данном дипломном проекте экономически целесообразно применение пневматических зажимных устройств. Они отличаются быстротой действия, имеют постоянную силу зажима (но допускают возможность регулирования), просты по конструкции и в эксплуатации, предусматривают дистанционное управление. Устройства состоят из пневмодвигателя, пневматической аппаратуры и воздухопроводов. В качестве пневмодвигателей используют поршневые пневмоцилиндры и мембранные камеры [22].
Пневматические приводы в виде поршневых цилиндров получили наибольшее распространение в практике сварочного производства. Основным недостатком данных приводов является то, что в пневмоцилиндрах рабочим агентом служит воздух, обладающий очень высокой упругостью и сжимаемостью. Сжатый воздух вследствие своей упругости работает в пневмоцилиндре как пружина. Поэтому при большом ходе поршня и переменной нагрузке штока пневмоцилидры работают с ударами и рывками, даже при наличии демпфирующих устройств. Такая неравномерная работа цилиндров с ускоренным движением поршня создает добавочную динамическую нагрузку на все связанные с цилиндром механизмы и опорные конструкции. Однако этот недостаток не относится к механизмам с коротким ходом рабочих органов. Благодаря малому пути движения рабочих органов, в кондукторе не могут образоваться сколько-нибудь значительные инерционные усилия, способные создать неблагоприятную динамическую нагрузку на механизмы.