Смекни!
smekni.com

Экологические характеристики гетерогенных катализаторов (стр. 6 из 9)

В работе [26] выявлена зависимость направления протекания превращений н-бутана от температуры на цинкмодифицированном цеолите типа ЦВМ. Установлено, что пропиленсодержащую фракцию процесса дегидрирования бутана можно переработать по двум направлениям:

- получение высокооктановых компонентов моторных топлив с низким содержанием ароматических углеводородов. Процесс рекомендуется вести при 300-330 0С, объемной скорости 300-720ч-1, продолжительность до 30ч.

- получение концентрата ароматических углеводородов, который может быть использован в качестве высокооктановой добавки к моторным топливам, либо как сырье для нефтехимии. Процесс рекомендуется проводить при 500-530 0С, объемной скорости 300-720ч-1, продолжительности до 20 часов.

Имеются также варианты повышения активности цеолитных катализаторов на стадии их синтеза [27]. Способ получения микросферического цеолитсодержащего катализатора для крекинга нефтяных фракций включает осаждение из водных растворов алюмината натрия и сернокислого алюминия аморфной гидроокиси алюминия, смещения водной суспензии гидроокиси алюминия в количестве 5-40% с алюмосиликатной суспензией и цеолитом с последующей распылительной сушкой. Повысить срок службы катализатора можно введением в состав цеолита железа [28]. Срок службы декатионированного цеолита в этом случае увеличивается с 85 до 570 ч для образца с содержанием железа 2,26%. Дальнейшее повышение концентрации железа в цеолите снижает срок службы катализатора.

Зависимость кислотных свойств цеолита от концентрации вводимого железа обуславливает и изменение его каталитических свойств. Введение железа на стадии гидротермального синтеза значительно повышает селективность катализатора по отношению к олефинам С24. Это объясняется снижением активности Fe-содержащих катализаторов во вторичных реакциях, к числу которых относится, например, реакция перераспределения водорода. Обнаружено промотирующее влияние железа (III) при нанесении его на декатионированный и деалюминированный высококремнистый цеолит типа пентасил в реакциях изомеризации дихлорбензолов и их алкилирования этиленом [28].

В процессе циклоформинга бензинового сырья в [29] использовали цинк-модифицированный цеолитсодержащий катализатор, в котором варьировали содержание цинка от 0 до 10 %. Полученные результаты согласуются со схемой образования АРУ из низкомолекулярных олефиновых продуктов крекинга, предложенной в [30] для СВК-цеолитов. Модифицирование катализаторов цинком способствует превращению продуктов крекинга в ароматические компоненты, как и при введении галлия в цеолиты типа ZSM [31], и протеканию реакций дегидрирования углеводородов, на что указывает непрерывное возрастание выхода водорода.

Наличие в составе катализатора металла - катализатора окислительно-восстановительных реакций - позволяет значительно снизить содержание кокса в регенерированном катализаторе - до 0,1% и менее, так как скорость горения остаточного кокса возрастает в этом случае на порядок и более [32].

В качестве металлов-промоторов, интенсифицирующих регенерацию закоксованного катализатора, применяют чаще всего платину, нанесенную в малых концентрациях (< 0,1 % масс.) либо непосредственно на цеолитсодержащий катализатор, или на окись алюминия с использованием как самостоятельной добавки к каталитической композиции [34]. Это позволяет значительно повысить полноту и скорость сгорания кокса катализатора и существенно понизить содержание монооксида углерода в газах регенерации, тем самым предотвратить неконтролируемое загорание СО над слоем катализатора в регенераторе, приводящее к прогару циклонов, котлов-утилизаторов и другого оборудования. Из отечественных промоторов окисления можно отметить КО-4, КО -9, Оксипром-1 и Оксипром-2.

Помимо непосредственного модифицирования состава катализатора используют и другие методы, позволяющие повысить срок активной работы контакта. Для снижения дезактивирующего влияния примесей сырья на цеолитсодержащий катализатор также весьма эффективно применяют технологию каталитического крекинга с подачей в сырье специальных пассиваторов металлов [34]. Последние представляют собой металлоорганические комплексы сурьмы, висмута, фосфора или олова. Сущность эффекта пассивации заключается в переводе металлов, осадившихся на катализаторе, в пассивное состояние, например, в результате образования соединения типа шпинели. Пассивирующий агент вводят в сырье в виде водо- или маслорастворимой добавки. Подача пассиваторов резко снижает выход кокса и водорода, увеличивает выход бензина и производительность установки. В настоящее время пассиваторы применяют на 80 % установок каталитического крекинга остатков в США и около 50 % установок в Западной Европе.

В последние годы внедряется ЦСК с твердой добавкой - ловушкой ванадия и никеля, содержащей оксиды Са, Mg, титанат бария и др., адсорбирующие в 6-10 раз больше металлов, чем сам катализатор.

Ну и, наконец, технологические параметры проведения процесса также оказывают непосредственное влияние на коксообразование и, следовательно, на время стабильной работы катализатора. Поэтому смягчение технологических режимов процессов приведет к повышению срока службы катализатора.

1.8 Способы осуществления регенерации в промышленности

Одной из определяющих эксплуатационных характеристик промышленных катализаторов является их регенерируемость. Цеолитсодержащие катализаторы имеют несколько лучшие регенерационные характеристики, чем аморфные алюмосиликаты. Применение в цеолитсодержащих катализаторах редкоземельного цеолита улучшает регенерацию вследствие катализирующего действия ионов редкоземельных элементов на горение кокса [35].

Регенерация катализатора обычно значительно сложнее, чем проведение самого процесса [36]. Сущность регенерации заключается в сгорании коксовых отложений при их контактировании с кислородом воздуха. В результате выделяется значительное количество тепла (от 6000 до 7500 ккал/кг кокса), которое необходимо частично отводить из зоны регенерации, чтобы не перегреть всю массу катализатора. При этом продолжительность регенерации не должна быть чрезмерно большой, чтобы регенератор был приемлемых размеров. Регенерационная способность катализатора - скорость выжига кокса, выраженная в г/(л-ч), но обычно - в кг кокса с 1 т катализатора в час, равная 50-80 кг/(т-ч).

Современный процесс, протекающий с дезактивацией катализатора, может быть эффективным лишь в том случае, если обеспечивает возможность простого осуществления регенерации катализатора. Поэтому в разных странах ведутся исследования с целью определения оптимальных условий реакции. В промышленных условиях для удаления кокса наиболее широко используется окислительная регенерация – процесс контролируемого выжига кокса кислородсодержащими смесями при температуре катализа и выше [37].

Окислительная регенерация представляет собой совокупность химических реакций, протекающих при взаимодействии кислорода с коксом, в результате которых кокс удаляется в виде газообразных продуктов. Выжиг кокса можно интенсифицировать, повышая содержание кислорода в газе и температуру регенерации, а также путем введения в состав катализатора промоторов окисления, которые не оказывают заметного влияния на его активность и селективность. При повышении температуры регенерации необходимо учитывать возможность спекания и растрескивания катализатора, так как целевым назначением процесса окислительной регенерации является удаление кокса без ухудшения свойств катализатора.

Регенерация катализаторов ведется горячим воздухом при температуре 650-750 °С, причем эта температура регулируется количеством дутья при коэффициенте избытка воздуха 1. При этом часть кокса сгорает до СО2 (теплота сгорания 33 МДж/кг), а остальной кокс - до СО (теплота сгорания 10 МДж/кг). Обычно в продуктах горения кокса мольное соотношение СО:СО2 равно примерно 1:1. В закоксованном катализаторе содержится 1,2-2,0 % (мас.) кокса, а после регенерации - не более 0,1 % (стремятся к 0,05 %) [38].

Регенерацию катализатора, как правило, не доводят до конца: частица отрегенерированного катализатора состоит обычно как бы из темного ядра, где в самых глубоких порах катализатора остается так называемый «глубинный» или остаточный кокс, и светлой отрегенерированной оболочки [36]. Остаточный кокс может составлять от 0,1 до 0,8% в пересчете на катализатор. Желательны значения остаточного кокса не более 0,1 %, так как повышенные его количества снижают начальную активность катализатора, а также способствуют его разрушению при колебаниях температуры.

Конструкция регенератора в значительной степени определяется тем, в каком реакторном аппарате проводится основной процесс. Для процессов со сплошным движущимся или псевдоожиженным слоем катализатора реализуется сменно-циклический режим работы [37]. При этом регенерацию проводят непрерывно в отдельном аппарате, так же как процесс в реакторе (т.е. в движущемся или псевдоожиженном слое). Напротив, для аппарата с неподвижным слоем катализатора реализуется, как правило, сменно-циклический режим работы: основной процесс и регенерация проводятся последовательно в одном и том же аппарате.