Смекни!
smekni.com

Видео усилители современного телевизора (стр. 3 из 3)

Усилители импульсов, не имеющих высокочастотного заполнения (видеоимпульсов), обычно относятся к видео усилителям, или точнее говоря к видео импульсным усилителям. Усиление низкочастотных непрерывных и импульсных (как в нашем случае) сигналов осуществляется апериодическими импульсными усилителями.

В качестве принципиальной схемы усилителя выберу схему, состоящую из N каскадов на однотипных, активных приборах с одинаковыми параметрами.

5. АНАЛИЗ ВОЗМОЖНЫХ СХЕМНЫХ РЕШЕНИЙ

Видеоусилители являются усилителями импульсных сигналов. Их изготовляют различной величины и формы. Наибольшее распространение видеоусилители получили в телевизорах для усиления видеосигналов, содержащих информацию о передаваемом изображении. Видеоусилителям телевизионных сигналов предъявляют следующие требования: сравнительно высокий коэффициент усиления в широкой полосе частот (50 Гц—6 МГц); правильное воспроизведение формы сигнала, обеспечиваемое фазовой линейностью, равномерностью амплитудно-частотной характеристики и уровнем видеосигнала; отношение сигнал — шум ^30.

Любые искажения видеосигнала (частотные, фазовые, нелинейные) приводят к искажению принимаемого изображения и поэтому должны быть минимальными. Для усиления видеосигналов применяют резистивные усилительные каскады, обладающие лучшими частотной и фазовой характеристиками по сравнению с другими каскадами.

В каскаде видеоусилителей используют транзисторы (микросхемы), имеющие граничную частоту усиления по току/^10/в, где /в — верхняя граничная частота спектра видеосигнала.

Как известно, усиление резистивного каскада в области верхних частот уменьшается из-за влияния паразитной емкости С0, сопротивление которой с увеличением частоты падает, что приводит к уменьшению сопротивления нагрузки и, следовательно, к уменьшению усиления.

В области нижних частот спектра сигнала усиление определяется емкостью разделительных конденсаторов Ср. С понижением частоты емкостное сопротивление конденсаторов увеличивается и, следовательно, меньшая часть сигнала подводится к базе транзистора следующего каскада.

Для получения равномерной амплитудно-частотной характеристики в широком спектре частот, т. е. равномерного усиления каскада, в схемы видеоусилителей вводят элементы частотной коррекции (рис. 99, а — в).

На схеме рис. 99, а в качестве коррекции верхних частот используют катушки индуктивности ЬЗ и Ь4, на схеме транзисторного видеоусилителя с коррекцией (рис. 99, б) Ы, образующую вместе с емкостью конденсатора СЗ параллельный колебательный контур. Если собственная частота контура близка верхней граничной частоте спектра видеосигнала, на этой частоте и близких к ней усиление каскада увеличивается с увеличением сопротивления нагрузки, определяемого эквивалентным сопротивлением колебательного контура.

На схеме транзисторного видеоусилителя с коррекцией нижних частот (рис. 99, в) показана цепь, состоящая из конденсатора С2 и резистора R2. На нижних частотах спектра сопротивление конденсатора увеличивается, что приводит к увеличению эквивалентного сопротивления нагрузки каскада и, следовательно, к увеличению усиления. На средних частотах спектра нагрузка каскада определяется сопротивлением резистора RЗ.

Подбором индуктивности катушки L1 (см. рис. 99, б) и емкости конденсатора С2 (см. рис. 99, в) можно изменять форму амплитудно-частотной характеристики видеоусилителя.

Качество точной настройки в значительной степени зависит от типа измерительной аппаратуры. Режимы работы микросхем и транзисторов проверяют электронными вольтметрами, имеющими высокое входное сопротивление. Для получения требуемой формы амплитудно-частотной характеристики чаще всего используют специальные генераторы качающейся частоты XI-50, частота выходного напряжения в которых изменяется во времени по определенному закону. Этими приборами можно непосредственно наблюдать амплитудно-частотную характеристику видеоусилителя на экране трубки прибора. После проверки монтажа, режима работы усилительного прибора и определения коэффициента усиления каскада на частоте 1 МГц добиваются получения требуемой формы амплитудно-частотной характеристики видеоусилителя с помощью указанных выше приборов. Рассмотрим эту операцию более подробно на примере использования генератора качающейся частоты (ГКЧ) XI-50, имеющего следующие характеристики: диапазон частот— 0,36—1002 МГц; полоса качания частоты в узкополосном режиме — 05—20 МГц; частотные метки через 1 и 10 МГц; выходное напряжение— 100 мВ с пределом изменения 0—50 дБ.

Выходной высокочастотный кабель прибора (в положении делителя 1:1) через конденсатор емкостью 0,1 мкФ подключают к входу видеоусилителя. При этом один из выводов видеодетектора отпаивают от схемы. Выходной кабель прибора с детекторной головкой подключают к выходу видеоусилителя.

Переключатель диапазона прибора устанавливают в положение 0,1 —15 МГц, регулятор видеоусилителя — в положение максимальной контрастности. Регулировкой ручек генератора качающейся частоты добиваются получения на экране прибора удобного для наблюдения размера амплитудно-частотной характеристики видеоусилителя.

Частотную характеристику в области 3—6,5 МГц корректируют изменением индуктивности видеоусилителя. Ширину полосы пропускания видеоусилителя измеряют с помощью меток. Вращением сердечников катушек

Рис. 99. Схемы видеоусилителей с коррекцией:

а, б— высокочастотной (катушками индуктивности ЬЗ и ¿4; катушкой индуктивности И и конденсатором СЗ), в — низкочастотной (конденсатором С2 и резистором Я2)

В качестве примера на рис. 100 приведена функциональная микросхема операционного усилителя, которая содержит усилитель-ограничитель УРЧ, частотный детектор Д и предварительный УЗЧ.

Настройку и регулировку видеоусилителей начинают с проверки монтажа и соответствия его принципиальной схеме. Затем проверяют режимы работы микросхем или транзисторов и работоспособность схемы в целом по наличию выходного сигнала при действующем сигнале на входе видеоусилителя. После этого выполняют операции, обеспечивающие заданные электрические показатели видеоусилителя: требуемый коэффициент усиления; необходимую форму амплитудно-частотной характеристики с минимальными частотными и фазовыми искажениями.

Рис. 100. Функциональная микросхема операционного усилителя на микросхеме

6. СПИСОК ЛИТЕРАТУРЫ

Петров В.П. Видеотехника. Ремонт и регулировка: Учебник для нач.проф. образования.- М.: Образовательно-издательский центр «Академия», 2002. -152с.

Полибин В.В. Ремонт и обслуживание радиотелевизионной аппаратуры. –М.: Высш.шк., 1991.

Резников М.Р. «Радио и телевидение вчера, сегодня, завтра» - М.: Связь, 1977. – 95с.

Ремонт, настройка и проверка радиотелевизионной аппаратуры. Специальная технология./ П.И. Мисюль.- Ростов н/Д, : Феникс, 2007.-506с. – Среднее профессиональное образование.

«Усилители, радиоприёмные устройства». Учебное пособие к лабораторным работам/ Под редакцией проф. А.С. Протопопова. -М.: МАИ,1996.

Узлы и модули современных телевизоров/ Н.В. Лукин, В.И. Лукин, Л.И. Руденко и др. – Киев: Наука и технология, 1994.